

LHC as a photonphoton collider with the ATLAS detector

Oldřich Kepka (IoP Prague)



05/11/2020 Division seminar

## Outline

- New ATLAS measurements presented
- Photon-induced measurements in proton-proton at  $\sqrt{s} = 13$  TeV
  - $\gamma\gamma \rightarrow W^+W^-$  [ATLAS-CONF-2020-038]: Observation of photon-induced diboson production, complete Run 2 dataset
  - $\gamma\gamma \rightarrow \ell^+ \ell^-$  [ATLAS-CONF-2020-041]: Measurement of **forward proton scattering** in association with lepton pairs
- Photon-induced measurements in ultra-peripheral lead-lead  $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$ 
  - $\gamma \gamma \rightarrow \mu^+ \mu^-$  [CERN-EP-2020-138]:

**Differential measurement** of exclusive dimuon production with **forward neutron** information

- γγ → γγ [arXiv:2008.05355]:
   Differential measurement of light-by-light scattering and search for axion-like particles, complete Run 2 dataset
- Small selection of new ideas

#### Typical proton-proton collision



[Sherpa authors]

#### **QCD** induced interactions are very busy

- Hard scattering initiated by q/g
- Parton shower
- Multi-parton interactions & Underlying event
- Hadronization

## Additional activity in PbPb reactions from spectator nucleon-nucleon interactions



#### Coherent photon-induced reaction



- Protons (and Pb) beams are source of intense light
- Clean events when both protons emit **coherently** a photon
- Protons stay intact, no other particles produced
- No color flow between protons (small rescattering corrections later)
- Opportunity to measure EW interactions and search for New Physics



## Coherent photon-induced reaction

- Photon flux derived from EM form factors of the p/nucleon
- Photons are quasi-real, related to the size R of the p/Pb→ small transverse momentum transfer to the produced system
  - Important experimentally

 $\mathbf{k}_{\perp} \approx 1/R \sim 0.3 \text{ GeV}$  (protons) ~ 0.06 GeV (Pb ions) Contracted EM field for fast moving charge





#### Types of photon-photon induced reactions



 Forward neutrons with E<sub>beam</sub>/N<sub>nucleon</sub> energy can be detected, ion easily disrupted, binding energy small (~ 10 MeV)

#### Survival factor

- $\gamma\gamma$  have also underlying
- Require final state with no additional particle production
   (X + nothing in det.) → accounted for with survival factor
- Only allow those rescattering, which do not break the proton Harland-Lang [arXiv:1601.03772], Dyndal [arXiv:1410.2983]

$$\langle S_{\text{eik}}^2 \rangle = \frac{\int d^2 \mathbf{b}_{1t} d^2 \mathbf{b}_{2t} |T(s, \mathbf{b}_{1t}, \mathbf{b}_{2t})|^2 \exp(-\Omega(s, b_t))}{\int d^2 \mathbf{b}_{1t} d^2 \mathbf{b}_{2t} |T(s, \mathbf{b}_{1t}, \mathbf{b}_{2t})|^2}$$





Prb. that there is no inelastic scattering, proton opacity  $\Omega$  extracted from pp elastic scattering

- In general, lack of implementation of survival prb in MC generators
- NEW: implemented for  $\gamma\gamma \rightarrow ll$  for elastic & inelastic in SuperChic 4.0
- SD/DD occur at smaller impact parameter → smaller S<sup>2</sup>

Harland-Lang [arXiv:2007.12704]

#### Standard Candle $\gamma\gamma \rightarrow ll$ in pp

#### • From handful of dilepton events in Run 1

- Veto additional energy in the whole detector (tracker, el/had calorimeters, ...)
- Low pileup







#### JHEP 11 (2012) 080



See also ALICE: EPJ C 73 (2013) 2617

- To thousands of events with 2015 dataset
- Extract signal using track-based selection in highpileup
- Survival probability models tested using differential distribution
- Potential for improvement by including full Run2

#### Techniques to detect $\gamma\gamma$ interactions in ATLAS



- Large pp dataset with pileup
- Signal isolated from QCD background by requiring 0 additional tracks found around hard vertex region using Inner Detector
- Unique opportunity to tag the outgoing protons in AFP forward detector in ATLAS

- No pileup in PbPb
- Reject activity in all detectors: ID, Calo, MBTS, Forward detectors
- ZDC to identify / reject background
- Dedicated triggers to select 'silent' ultra-peripheral collisions (UPC)



Observation of photon-induced  $\gamma \gamma \rightarrow W^+ W^-$  production in pp collisions at  $\sqrt{s} = 13$  TeV using the ATLAS detector [ATLAS-CONF-2020-038]

#### $\gamma\gamma \rightarrow W^+W^-$ : Motivation

- Excellent laboratory to test EW sector of SM
  - Direct access to triple  $\gamma W^+W^-$  and quartic  $\gamma \gamma W^+W^-$  interactions,  $O(\alpha_{EM}^2)$  process
  - No coupling to Z or H at LO





- Tree-level unitarity required for SM to be renormalizable theory
- Amplitude of individual diagrams grows with CME (longitudinal polarizations of W)
- Both linear and quadratic divergence cancelled in the sum.
- Clear interpretation only EW fields interacting at LO
  - Compare with e.g. same-sign WW which includes strong production



## $\gamma\gamma \rightarrow W^+W^-$ : Analysis overview

- Cross section measurement using leptonic decays of W: 139 fb<sup>-1</sup>, full Run 2 dataset
- Previous measurements at 7/8 TeV
  - ATLAS/CMS 3σ evidence
     [arXiv:1607.03745], [arXiv:1604.04464]
- Only central detector, no proton tagging
- Dissociative production is part of signal

Exactly one electron and muon with opposite charge  $p_{\rm T}^{\rm lep} > 27, 20 {\rm ~GeV}$  $p_{\rm T}(e\mu) > 30 {\rm ~GeV}, m_{e\mu} > 20 {\rm ~GeV}$ No track associated with the hard scatter vertex



 No soft survival accounted for LO only



- Main backgrounds:
  - pp  $\rightarrow$  WW and pp  $\rightarrow$  Z  $\rightarrow \tau\tau$  events with 0 tracks: Powheg+Pythia8/Herwig7, Sherpa



22 reconstructed vertices in the event, 16 displayed

-12

-14

-10

-8

-6

-2

0

2

z [mm]

-4





 Analysis relies on precise modelling of low number of tracks in signal & background processes

#### Experimental technique



#### **Experimental techniques**

- Harsh LHC environment
- Typical selected event has primary interaction vertex, and leptons from hard interaction, particles from underlying event and pileup

#### **Dedicated algorithms or data driven corrections**

- Special vertex reconstruction
- Underlying event correction for background
- Pileup density and track multiplicity correction
- Modelling correction for signal (account for dissociation and survival factor)

Building on previous ATLAS exclusive measurements [arXiv:1708.04053], [arXiv:1708.04053]

#### Vertex reconstruction and track selection

 Lepton tracks used to define interaction vertex

$$z_{\text{vtx}}^{\ell\ell} = \frac{z_{\ell_1} \sin^2 \theta_{\ell_1} + z_{\ell_2} \sin^2 \theta_{\ell_2}}{\sin^2 \theta_{\ell_1} + \sin^2 \theta_{\ell_2}}$$

- $\sin^{-1}\theta_{\ell}$  parameterises the uncertainty of the measured  $z_{\ell}$  position
- Position not biased by nearby pileup tracks
- Advantage compared to ATLAS standard vertex (selected with max sum  $p_{\rm T}^2$  )
- Track counting in 2 mm window
  - $p_{\rm T} > 500$  MeV,  $|\eta| < 2.5$
  - Not associated to any lepton
  - Transverse and longitudinal impact parameters  $|d_0|$ ,  $|z_0| < 1 \text{ mm}$

$$n_{\text{trk}} = n_{\text{trk}}^{\text{UE}} + n_{\text{trk}}^{\text{PU}} + \varepsilon(\text{fakes}, \dots)$$





## Pileup and beamspot

**Issue**: longitudinal size of luminous region time dependent and smaller than in MC

- $\sigma_{\text{Data}}^{\text{BS}} = 36 \text{ mm}, \sigma_{\text{MC}}^{\text{BS}} = 42 \text{ mm}$
- Exclusive selection more efficient in MC due to smaller pileup track density

#### **Beamspot size correction**

- Corrected by scaling z\_0 impact parameter of pileup tracks with  $\sigma_{\rm Data}^{\rm BS}/\sigma_{\rm MC}^{\rm BS}$
- Signal processed matching the BS size in data

#### Validation

- Pileup modelling as a function of z validated using "tail positions" in Drell-Yan events
- Tracks counted in 2 mm windows, well separated from lepton vertex  $|z_{vtx}^{\ell\ell} z_{trk}| > 10 \text{ cm}$
- Data/MC differences applied as additional correction



z-position along the beam line [mm]

## Background and pileup modelling

- V and VV have similar colour structure → therefore similar UE → correct VV mismodelling using Drell-Yan measurement
- Applied a function of p<sub>T</sub>(V) and p<sub>T</sub>(VV) to qq induced WW, WZ, ZZ and Drell-Yan



Herwig7 well performing

- Fully data-driven method to estimate probability for number of pileup tracks in 2mm selection window around leptons
- 52.6% average Run 2 exclusive efficiency,  $\langle \mu \rangle = 33.7$



#### ATLAS-CONF-2020-038

## Application of UE correction

 Excellent modelling of DY using p<sub>T</sub>(Z) dependent correction for both Powheg and Sherpa

From  $qq \rightarrow Z$  to  $qq \rightarrow WW$ 





- 0 < n<sub>trk</sub> ≤ 4: very good agreement for WW using p<sub>T</sub>(WW) dependent correction for all generators / tune variations
- Extrapolation to SR: expected WW yield taken as midpoint between predictions

Powheg+Pythia8 and UE eigentune variations Powheg+Herwig7 Sherpa

• Maximum deviation taken as uncertainty

## Signal modelling

#### Dissociative production is part of signal

- MC with complete modelling of  $\gamma \gamma \rightarrow W^+ W^-$  not available (in the future in Superchic)
  - MG5-Pythia8 interface issues for single-diss sample (FSR emitted from intact p)
  - No survival effects for dissociate contributions

#### Use data m<sub>II</sub>>160 GeV n<sub>trk</sub>=0 to estimate missing components and scale elastic WW





• SF = 
$$\frac{N_{\text{data}} - N_{\text{DY}}}{N_{\gamma\gamma \to ll}^{\text{MC,Elastic}}} = 3.59 \pm 0.15 \text{ (stat + syst)}$$

• DY background from data, selected with  $n_{\rm trk} = 2$  and  $n_{\rm trk} = 5$ , normalized in Z peak

## Signal and control regions

- Signal extracted in a profile likelihood fit
  - four bins with pT(II) < 30 GeV or pT(II) > 30 GeV, and  $1 \le n_{\rm trk} \le 4$  or  $n_{\rm trk} = 0$
  - one bin for signal modelling correction (m(II)>160GeV)
  - four free parameters:

normalizations of  $\gamma\gamma \rightarrow WW$ ,  $\gamma\gamma \rightarrow ll$ , Drell-Yan and WW





#### Results

- 307 observed, 132 background events expected
- Signal normalization  $\mu_{\gamma\gamma \to WW}$  is expressed relative to scaled predictions using high-mass  $\gamma\gamma \to ll$

$$\begin{aligned} \beta_{WW} &= 1.21^{+0.19}_{-0.23} \\ \beta_{DY} &= 1.16^{+0.10}_{-0.12} \\ \beta_{\gamma\gamma \to ll} &= 3.59 \pm 0.15 \\ \mu_{\gamma\gamma \to WW} &= 1.33 \pm 0.14 \text{ (stat.)}^{+0.22}_{-0.17} \text{ (syst.)} \end{aligned}$$

• Background only hypothesis rejected with 8.4 $\sigma$  (6.7 $\sigma$  expected)





#### Fiducial cross section

Measured fiducial cross-section

 $\sigma_{\rm fid} = 3.13 \pm 0.31 \text{ (stat.)} \pm 0.28 \text{ (syst.) fb}$ 

- Dominant systematic uncertainties
  - WW modelling in the SR
  - Signal modelling scale factor: evaluated as a change of the SF over  $160 < m_{ll} < 400 \text{ GeV}$
  - Statistical uncertainty on the background (includes CR for misidentified leptons)

| Source                                               | Impact [%] |
|------------------------------------------------------|------------|
| Experimental                                         |            |
| Track reconstruction                                 | 1.1        |
| Electron energy scale and resolution, and efficiency | 0.4        |
| Muon momentum scale and resolution, and efficiency   | 0.5        |
| Misidentified leptons                                | 1.5        |
| Background, statistical                              | 6.7        |
| Modelling                                            |            |
| Pileup modelling uncertainties                       | 1.1        |
| Underlying event modelling uncertainties             | 1.4        |
| Signal modelling uncertainties                       | 2.1        |
| WW modelling uncertainties                           | 4.0        |
| Other background uncertainties                       | 1.7        |
| Luminosity                                           | 1.7        |
| Total                                                | 8.9        |

- Theoretical prediction MG5+Pythia8 (MMHT):  $\sigma_{MG5} = 4.3 \pm 1 \text{ (scale)} \pm 0.12 \text{ (PDF) fb}$ 
  - No soft rescattering effects in WW available MG5-Pythia8 interface issues for single-diss sample
- Data-normalized prediction (scaled by 3.59):
  - Requires data input and is only valid in the  $m_{\gamma\gamma}$  mass range investigated, unsuitable for generalised theory reinterpretations
- Small tension observed, modelling of diboson system would profit from improvements
- Outlook: differential distribution and BSM interpretations

$$\sigma_{\rm MC, Elastic} \times 3.59 = 2.34 \pm 0.27$$
 fb

Observation and measurement of **forward proton scattering** in association with lepton pairs produced via the photon fusion mechanism at ATLAS [ATLAS-CONF-2020-041]

## ATLAS Forward Proton (AFP) Detector

- Directly measure intact protons 220 m from the ATLAS interaction point
  - Open new physics program of diffractive & photon collisions
- Both A and C arms installed in 2017 for standard high-luminosity LHC data-taking



#### LHC beam

Scattered proton

Time-Of-Flight detector

Silicon tracker

#### TeV Spectrometer

- Infer energy lost by proton from displacement from the beam
  - $\xi = 1 E_{\rm reco}/E_{\rm beam}$



- Typical acceptance depends on details of the LHC optics and approach to the beam
  - ATLAS:  $0.02 < \xi < 0.1$
  - CMS:  $0.03 < \xi < 0.15$
- Calculate expected proton energy loss
   from dilepton system
- Match with the measurement in AFP/PPS
- Selection allows efficient background suppression
- Forward taggers at LHC can double-tag central masses  $M_X = \sqrt{s\xi_A\xi_C}$ ,  $300 500 \,\text{GeV} < M_X < 1.1 1.5 \,\text{TeV}$

$$|\xi_{\ell\ell} - \xi_{AFP}| < \sigma(\xi_{\ell\ell}) + \sigma(\xi_{AFP})$$

Cع

 $\xi_{ll}^{A,C} = (m_{ll}/\sqrt{s})e^{\pm y_{ll}}$ 

#### Analysis overview $\gamma \gamma \rightarrow l^+ l^- + AFP$

- At least 1 proton tag
- Kinematic match  $|\xi_{\ell\ell} \xi_{\rm AFP}| < 0.005$
- No charged track in addition to leptons

- Initial observation at CMS+CT-PPS with 2016 data with 50 events, ee/µµ combined, 9.4fb<sup>-1</sup>, JHEP 07 (2018) 153 (see backup)
- Signal = elastic + single-dissociation
- Background dominated by Drell-Yan + random protons from pileup
  - Robust data-driven estimate for combinatoric background
  - Mixing events + side-band fit to  $|\xi_{ll} \xi_{\rm AFP}| > 0.005$
  - Cross-check in  $70 < m_{ll} < 105 \text{ GeV}$  region

S/B discrimination even under Z peak thanks to AFP!





arXiv:2009.14537

#### $\gamma\gamma \rightarrow l^+l^-$ measurement in ATLAS

#### 100 Events / 20 GeV ATLAS Preliminary Data 2017 $\sqrt{s} = 13 \text{ TeV}, 14.6 \text{ fb}^{-1}$ Uncertainty 80 Postfit, 0.02 < ξ < 0.12 $pp \rightarrow p(\gamma \gamma \rightarrow \mu \mu)p$ pp→p(γγ→ee)p 60 pp→p(γγ→μμ)p\* $pp \rightarrow p(\gamma \gamma \rightarrow ee)p^*$ 40 Combinatorial bkg. 20 0 200 50 100 150 250 300 $m_{ll}$ [GeV]



arXiv:2009.14537

- First **fiducial cross section measurement** with a proton tag at the LHC
- Mostly single tag events, with 30 < m<sub>ll</sub> < 630 GeV, substantial contribution above the EW scale
  - No double-tagged event matching leptons seen yet
- Constrain modelling of survival effects/photon fluxes

| $\sigma_{\mathrm{Herwig+Lpair}} 	imes S_{\mathrm{surv}}$ | $\sigma_{ee+p}^{\text{fid.}}$ [fb] | $\sigma_{\mu\mu+p}^{\text{fid.}}$ [fb] |
|----------------------------------------------------------|------------------------------------|----------------------------------------|
| $S_{ m surv} = 1$                                        | $15.5\pm1.2$                       | $13.5 \pm 1.1$                         |
| $S_{\rm surv}$ using Refs. [31,30]                       | $10.9\pm0.8$                       | $9.4 \pm 0.7$                          |
| SuperChic 4 [94]                                         | $12.2\pm0.9$                       | $10.4\pm0.7$                           |
| Measurement                                              | $11.0\pm2.9$                       | $7.2\pm1.8$                            |

Exclusive dimuon production in ultraperipheral Pb+Pb collisions at  $\sqrt{s_{NN}} = 5.02$  TeV with ATLAS [<u>CERN-EP-2020-138</u>]

#### Exclusive dimuons in UPC Pb+Pb

- Sensitive to higher order effects (FSR photons, Coulomb)
- Categorize events with **0n0n, Xn0n, XnXn** 
  - Categories defined by cutting on the ZDC energy
- Signal and background modelling
  - Signal: Starlight+Pythia8 (LO+ FSR)
  - Semi-coherent: LPair (pp)
- Signal extraction obtained fitting acoplanarity distribution





- ZDC selections have strong effect on acoplanarity
- LPair provides satisfactory description of dissociative background



## $\gamma\gamma \rightarrow \mu^+\mu^-$ in Pb+Pb: forward neutrons

- Measured fraction with different activity (0nXn, XnXn)
  - Impact parameter dependence of the photon fluxes
- XnOn, f<sub>XnXn</sub> Sensitive to additional EM interactions between ions leading to Pb dissociation and forward neutrons
  - Correction for 'EM pileup' other UPC PbPb interaction can produce neutrons (low pileup, but large electromagnetic dissociation cross section)
- Forward neutrons more likely to be produced in simulation



 $20 < m_{uu} < 40 \text{ GeV}$ 

1.5

2

0.6

g

0.5

1

Measurement of **light-by-light scattering** and **search for axion-like particles** with 2.2 nb–1 of Pb+Pb data with the ATLAS detector [arXiv:2008.05355]

## Light-by-Light Scattering in PbPb

- Detector selection at the limit of ATLAS capabilities
  - Very low E<sub>T</sub> photons, E<sub>T</sub>>2.5 GeV
  - Track veto (p<sub>T</sub> > 100 MeV) + pixel track veto (p<sub>T</sub>>50 MeV) in the vicinity of the reconstructed electrons
- Dedicated selections at trigger level
  - L1: Minimal energy in the calorimeters
  - HLT: Limited number of hits in Pixel, Veto in MBTS/FCal detectors
- Previous measurements
  - 2018 data: ATLAS (8.2  $\sigma$  observation) PRL 123 (2019) 134826
  - 2015 data: ATLAS/CMS (~4 evidence) Nat. Phys. 13 (2017) 852, PLB 797 (2019) 134826
- Main backgrounds
  - $\gamma \gamma \rightarrow e^+ e^-$  with 2 fake photons, CEP  $gg \rightarrow \gamma \gamma$
  - Estimated using data driven methods









Run: 287924 Event: 106830493 2015-12-12 19:41:56 CEST





#### Photon efficiency and ID performance

# And Photon efficiency

- $\gamma\gamma \rightarrow e^+e^-\gamma$  with bremsstrahlung due interaction with ID material
- 1 (tag) electron reconstructed
- 2 pixel tracks, one low-p⊤

#### **Photon identification**

- $\gamma \gamma \rightarrow l^+ l^- \gamma$  with hard FSR photons
- Verify photon shower shapes and efficiency for good photon to pass photon identification



Differences between data and MC accounted for using scale factors

#### 2015+2018 PbPb data

- 97 events observed, 45 signal + 27 expected
- Measured cross section:  $\sigma_{fid} = 120 \pm 17$  (stat.)  $\pm 14$  (syst.)  $\pm 4$  (lumi.) nb
  - Measurement statistically limited. Dominant sources of uncertainty: trigger efficiency, photon reconstruction eff,  $\gamma \gamma \rightarrow e^+ e^-$  background estimate (statistics in CR)
- Predictions:  $\sigma_{\text{theory}} = 80 \pm 8 \text{ nb}, 78 \pm 8 \text{ nb}$  (SuperChic 3.0, PRC 93 (2016) 044907)
- Distributions unfolded to particle level ( $m_{\gamma\gamma}$ ,  $|y_{\gamma\gamma}|$ ,  $(p_T^{\gamma 1} + p_T^{\gamma 2})/2$ ,  $|\cos(\theta^*)|$ )
- Cross section  $1.7\sigma$  higher than predictions, shapes modeled well



#### Search for Axion-Like-Particles

- Search for (pseudo) scalar  $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$  resonance
  - Proposed as a solution to strong CP problem
  - Background includes SM LbyL, CEP γγ and ee
- Limits on  $\sigma_{\gamma\gamma \to a \to \gamma\gamma}$  extracted
  - Cast into limits on aγγ coupling (1/Λ<sub>a</sub>) assuming BR(a→γγ)=1
  - Most stringent ALP limits for medium masses





#### Constrain Tau g-2 in PbPb

- Tau anomalous magnetic moment
  - Poorly constrained experimentally
  - BSM g-2 modifies the tau-photon coupling
  - Can be  $(m_{\tau}/m_{\mu})^2 \sim 280x$  more sensitive to BSM than  $a_{\mu}$
- $10^6 \gamma \gamma \rightarrow \tau + \tau$  produced with Run 2 PbPb dataset
- 2-3x better precision for  $a_{\tau}$  than PDG today



Dyndal et al [2002.05503] See also Beresford, Liu [1908.05180]



## The LHC as a lepton collider

- Proton not only source photons, but also leptons!
- LUX approach applied to calculate the lepton PDF
- Much suppressed with respect to the QCD induced processes
- Opens some rare lepton-initiated processes and BSM productions at the LHC





|                                 | $e^+\mu^-$                      | $e^+	au^-$                      | $\mu^+	au^-$                    | $e^+e^+$                        | $\mu^+\mu^+$                    | $	au^+	au^+$                    |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| $\sigma_{13{ m TeV}}~[{ m fb}]$ | $0.29\substack{+0.13 \\ -0.10}$ | $0.18\substack{+0.11 \\ -0.08}$ | $0.16\substack{+0.10 \\ -0.07}$ | $0.24\substack{+0.10 \\ -0.08}$ | $0.19\substack{+0.09 \\ -0.07}$ | $0.08\substack{+0.06 \\ -0.04}$ |
| $\sigma_{27{ m TeV}}~[{ m fb}]$ | $0.53\substack{+0.25 \\ -0.18}$ | $0.34\substack{+0.21 \\ -0.15}$ | $0.30\substack{+0.19 \\ -0.14}$ | $0.440\substack{+0.19\\-0.14}$  | $0.34\substack{+0.16 \\ -0.12}$ | $0.14\substack{+0.12 \\ -0.07}$ |

L. Buonocore, P. Nason, F. Tramontano & G. Zanderighi: JHEP 08 (2020) 019

#### Summary

- Photon-induced events are excellent laboratory to test EW physics
- Several new EW measurements using full Run2 in pp and PbPb
- Proton tagging can be used to enhance S/B or look for BSM signatures (110 fb<sup>-1</sup> data available to be analyzed with CMS+PPS, 14.6 fb-1 with ATLAS+AFP)
- Mainly WW and  $\gamma\gamma$ , measurements can easily be extended to other FS (ZZ, WZ ... )
- **PbPb UPC collisions** are significant part of the program. Look for signatures that are unreachable in high-pileup pp environment.

#### Thanks for your attention!

## LbyL with tagged protons in CMS

- Goal: Search for anomalous 4-photon couplings at high mass  $m_{\gamma\gamma}$ >350 GeV
- Data collected in 2016, 9.6fb-1, will be extended to total of 110 fb<sup>-1</sup> of Run2
- Extension of SM dim-8 charge-parity conserving operators

 $L_8^{\gamma\gamma\gamma\gamma} = \zeta_1 F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2 F_{\mu\nu} F^{\mu\rho} F_{\rho\sigma} F^{\sigma\nu}$ 



EXO-18-014, TOTEM 2020-003



- No events observed when mass/ rapidity matched between diphotons and forward protons

266 events with elastic selection 1 –  $|\Delta \phi|/\pi < 0.005$ 

#### Exclusive dimuons in UPC Pb+Pb in CMS

- Determine neutron multiplicity from ZDC
- Strategy: agnostic to signal and background modelling
- Fit core and tail in acoplanarity distribution
- Strong dimuon acoplanarity and mass observed as function of forward neutron multiplicity
- Demonstrates impact parameter dependence of p<sub>T</sub> and E of the photon fluxes





CMS HIN-19-014

#### Photon PDFs and interface to generators

- PDF sets using modern LuxPDF approach
- Elastic, inelastic, and combined versions
- The use of these PDFs in generators would benefit from improvements
  - Modules responsible for showering should not touch the 'elastic' proton

LUXqed17\_plus\_PDF4LHC15\_nnlo\_100

NNPDF31\_nlo\_as\_0118\_luxqed

NNPDF31\_nnlo\_as\_0118\_luxqed

MMHT2015qed\_nnlo\_total

MMHT2015qed\_nnlo\_inelastic

MMHT2015qed\_nnlo\_elastic

- **Example:** single dissociative production in MG5\_aMC@NLO+Pythia8
  - Too much radiation despite setting appropriate parameters
     (BeamRemnants:unresolvedHadron)
  - Pythia8 runs FSR on the intact proton (hadronization behaves correctly)
  - Charged particle spectra re-weighted to LPair to make of the SD sample
- LPair can only  $\gamma \gamma \rightarrow e^+ e^-$ ,  $\mu^+ \mu^-$  and uses obsoleted Suri-Yennie photon structure functions obtained at small Q<sup>2</sup>
- Superchic 4.0+Pythia8:  $\gamma \gamma \rightarrow l^+ l^-$  production for EL/SD/DD. WW in the future.

#### $\gamma\gamma \rightarrow ll$ tagged photon-induced events in CMS

- Only 1 proton tag required to increase acceptance
- No charged particle tracks in additional to the leptons
- Acoplanarity and p<sub>T</sub>(II) selections

CMS+TOTEM 2016, L = 9.4 fb<sup>-1</sup>,  $\sqrt{s}$  = 13 TeV  $y(l^+l^-)$  μ<sup>+</sup>μ<sup>-</sup> • e+esector 45 0 2 0 0 sector 56 • • 0 -2 No acceptance -4 Acceptance in 210-N/F Acceptance in 210-F -6 Double-arm acceptance -8 10<sup>2</sup>  $10^{3}$  $10^{4}$  $m(l^+l^-)$  (GeV)

- 17 µ+µ- and 23 e+e- events with a kinematic match between leptons and th
- First observation of proton-tagged yy collisions at the electroweak scale when ee/mm combined



#### $\gamma\gamma \rightarrow$ WW: Previous measurements

- $3\sigma$  evidence with Run 1 data by ATLAS/CMS
- ATLAS 8 TeV measurement arXiv:1607.03745
  - 23 observed events, 8.3±2.6 expected background events
- CMS 7+8 TeV measurement <u>arXiv:1604.04464</u>
  - 13 observed events with 3.9±0.6 expected at 8 TeV
- Similar sensitivity between ATLAS/CMS on anomalous quartic coupling
- At the time, up to factor ~10 better sensitivity than inclusive WWγ measurements



 $M(\mu e)$  [GeV]

## Pileup correction

• Pileup correction applied as a function of  $z_{vtx}^{\ell\ell}$  and number of pileup tracks





- Excellent modelling of the expected number tracks around lepton vertex after trk z0 scaling and pile-up correction
- Obtained by folding in the beam spot distribution
- n<sup>PU</sup><sub>trk</sub>=0 → signal selection
   efficiency due to track selection

#### How bright is the proton?

- Approaches to inelastic part in the past (list not exhaustive)
  - Photon is modelled, radiated from constituent quarks  $q \rightarrow q\gamma$ : MRST2004, CT14qed
  - Photon PDF is constrained by pp→I+I-: NNPDF23QED, NNPDF30QED
- Large uncertainties (~100%), impact on precision physics (W/Z fusion, WH production)

#### LuxQED advancement [arXiv:1607.04266]

- $f_{\gamma/p}$  computed from the structure functions of DIS
- Viewed as lepton scattering on a photon inside proton
- Uncertainties at 1% level





$$\begin{split} xf_{\gamma/p}(x,\mu^2) &= \frac{1}{2\pi\alpha(\mu^2)} \int_x^1 \frac{dz}{z} \Biggl\{ \int_{\frac{x^2 m_p^2}{1-z}}^{\frac{\mu^2}{1-z}} \frac{dQ^2}{Q^2} \alpha^2(Q^2) \\ \left[ \left( zp_{\gamma q}(z) + \frac{2x^2 m_p^2}{Q^2} \right) F_2(x/z,Q^2) - z^2 F_L\left(\frac{x}{z},Q^2\right) \right] \\ &- \alpha^2(\mu^2) z^2 F_2\left(\frac{x}{z},\mu^2\right) \Biggr\} \end{split}$$

#### Photon PDF composition



Input data sources in x and Q<sup>2</sup> plane

Photon PDF composition  $\mu = 100 \text{ GeV}$ scaled by  $1000x^{0.4} / (1-x)^{4.5}$ 

#### Photon PDF uncertainties

#### [arXiv:1607.04266]





#### Photon-induced process templates







#### $\gamma\gamma \rightarrow$ WW: Exclusive efficiency

- Run 2 average exclusive efficiency (n<sub>trk</sub>=0 selection): 52.6 %
- Strong dependence on µ number of pp interactions per crossing
- Modelled within 2% across the full μ range





#### $\gamma\gamma \rightarrow WW$ yields

- 307 candidate observed, 132 background events expected
- Signal normalization is expressed relative to scaled predictions using high-mass  $\gamma\gamma \rightarrow ll$

$$\begin{split} \beta_{WW} &= 1.21^{+0.19}_{-0.23} \\ \beta_{DY} &= 1.16^{+0.10}_{-0.12} \\ \beta_{\gamma\gamma \to ll} &= 3.59 \pm 0.15 \\ \mu_{\gamma\gamma \to WW} &= 1.33 \pm 0.14 \; (\text{stat.})^{+0.22}_{-0.17} \; (\text{syst.}) \end{split}$$

|                             | Signal region   |                  | Control regions                |                 |
|-----------------------------|-----------------|------------------|--------------------------------|-----------------|
| $n_{ m trk}$                | $n_{ m trk}=0$  |                  | $1 \le n_{\mathrm{trk}} \le 4$ |                 |
| $p_{\mathrm{T}}^{e\mu}$     | $> 30 { m GeV}$ | $< 30 { m ~GeV}$ | $> 30 { m GeV}$                | $< 30 { m GeV}$ |
| $\gamma\gamma \to WW$       | $174 \pm 20$    | $45 \pm 6$       | $95 \pm 19$                    | $24 \pm 5$      |
| $\gamma\gamma \to \ell\ell$ | $5.5~\pm~0.3$   | $39.6 \pm 1.9$   | $5.6 \pm 1.2$                  | $32 \pm 7$      |
| Drell-Yan                   | $4.5 \pm 0.9$   | $280 \pm 40$     | $106 \pm 19$                   | $4700\pm400$    |
| $qq \rightarrow WW$         | $101 \pm 17$    | $55 \pm 10$      | $1700 \pm 270$                 | $970\pm150$     |
| Non-prompt                  | $14  \pm 14$    | $36 \pm 35$      | $220  \pm \ 220$               | $500\pm400$     |
| Other $qq$ initiated        | $7.1 ~\pm~ 1.7$ | $1.9 \pm 0.4$    | $311 \pm 76$                   | $81 \pm 15$     |
| Total                       | $305 \pm 18$    | $459 \pm 19$     | $2460 \pm 60$                  | $6320 \pm 130$  |
| Data                        | 307             | 449              | 2458                           | 6332            |

#### AFP momentum reconstruction

• Different contributions deteriorating the momentum resolution of the proton.



#### AFP Alignment



- Inter-plane alignment minimize pixelcluster residuals from the track, precision several μm
- **Global position** using beam based alignment - approach collimated beam to scape beam envelope, precision  $\sim 300 \mu m$
- Validated using  $\xi_{ll} \xi_{AFP}$  correlation
- ξ resolution ~10% (optics), 25% at small ξ
   (alignment)





Beam



#### AFP ToF Detector

- Analyzed 2017 data
- 20-30 ps achieved timing resolution, 40-50 ps in the first channel (no enrichment from the previous bars)
- Efficiency limited (few %) in 2017 due due to PMT deterioration with radiation







#### AFP: reconstructed interaction vertex from ToF

Difference between reconstructed interaction vertex from ToF





#### AFP $\gamma \gamma \rightarrow 11$ : control distributions

- Shapes of distributions modelled well by Herwig7+LPair
- Postfit distribtion of AFP single tag events



#### AFP $\gamma\gamma \rightarrow$ ll: Measurement prefit and postfit distributions



#### AFP $\gamma \gamma \rightarrow 11$ : Systematic uncertainties

| Source of systematic uncertainty                         | Impact |
|----------------------------------------------------------|--------|
| Forward detector                                         |        |
| Global alignment                                         | 6%     |
| Beam optics                                              | 5%     |
| Resolution and kinematic matching                        | 3–5%   |
| Track reconstruction efficiency                          | 3%     |
| Alignment rotation                                       | 1%     |
| Clustering and track-finding procedure                   | < 1%   |
| Central detector                                         |        |
| Track veto efficiency                                    | 5%     |
| Pileup modeling                                          | 23%    |
| Muon scale and resolution                                | 3%     |
| Muon trigger, isolation, reconstruction efficiencies     | 1%     |
| Electron trigger, isolation, reconstruction efficiencies | 1%     |
| Electron scale and resolution                            | 1%     |
| Background modeling                                      | 2%     |
| Luminosity                                               | 2%     |

## LbyL Trigger Efficiency

- 2015:
  - L1: E<sub>T</sub> registered in the calorimeter between 5–200 GeV
  - HLT: MBTS veto if > 1 hit in MBTS, <10 hits in Pixel
- 2018:
  - L1: (1) >=1 EM cluster with E<sub>T</sub> > 1 GeV & E<sub>T</sub> registered in the calorimeter between 4–200 GeV, or (2) >=2 EM clusters with E<sub>T</sub> > 1 GeV & E<sub>T</sub> registered in the calorimeter below 50 GeV
  - HLT:  $E_T$  in FCal < 3 GeV, <15 hits in Pixel
- Supporting triggers: Signal in one or both ZDC sides, total E<sub>T</sub> in the calorimeter
   < 50 GeV</li>
- Measured using  $\gamma \gamma \rightarrow e^+ e^-$



#### Control distributions

• Good modelling of the background  $\gamma \gamma \rightarrow e^+ e^-$ 





#### LByL: signal region



#### LByL: differential cross sections





#### LByL: systematic uncertainties





#### Exclusive dimuons in UPC Pb+Pb

- Events / bin width Events / bin width ATLAS Preliminar ATLAS Preliminary 0n0n Xn0n 5.02 TeV, 0.48 nb 5.02 TeV, 0.48 nb<sup>-1</sup> 10 < m<sub>uu</sub> < 20 GeV  $10 < m_{uu} < 20 \text{ GeV}$  $PbPb(\gamma\gamma) \rightarrow \mu^{+}\mu^{-}(Pb^{(\gamma)}Pb)$ ly \_\_\_l < 0.8 ly <sub>uu</sub>l < 0.8  $PbPb(\gamma\gamma) \rightarrow \mu^{+}\mu^{-}(PbPb)$ 10<sup>4</sup> 10<sup>4</sup>  $f_{dis} = 0.000 \pm 0.006$ Data  $f_{dis} = 0.074 \pm 0.009$ Data Ó Ó Total STARlight+Pythia8 STARlight+Pythia8 10 LPair (dissociative) 10 10 10 ō 0.02 0.06 0.08 0.02 0.06 0.08 0.04 0.1 0.12 0.04 0.1 0.12  $\alpha (= 1 - |\Delta \phi| / \pi)$  $\alpha (= 1 - |\Delta \phi| / \pi)$ Events / bin width Events / bin width ATLAS Preliminary XnXn ATLAS Preliminary Inclusive ZDC 5.02 TeV, 0.48 nb<sup>-1</sup> 5.02 TeV, 0.48 nb<sup>-1</sup>  $10 < m_{\mu\mu} < 20 \text{ GeV}$  $10 < m_{\mu\mu} < 20 \text{ GeV}$  $PbPb(\gamma\gamma) \rightarrow \mu^{+}\mu^{-}(Pb^{(*)}Pb^{(*)})$  $\mathsf{PbPb}(\gamma\gamma) \rightarrow \mu^{+}\mu^{-}(\mathsf{Pb}^{(\star)}\mathsf{Pb}^{(\star)})$ ly \_\_\_ < 0.8 ly\_\_\_l < 0.8 10<sup>4</sup> 10<sup>4</sup>  $f_{dis} = 0.122 \pm 0.021$ Data  $f_{dis} = 0.029 \pm 0.003$ Data Tota Tota STARlight+Pythia8 STARlight+Pythia8 10<sup>3</sup> LPair (dissociative) LPair (dissociative) 10 10 10 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.02 0.04 0.06 0.12  $\alpha (= 1 - |\Delta \phi| / \pi)$  $\alpha (= 1 - |\Delta \phi| / \pi)$
- ZDC selections have strong effect on acoplanarity
- LPair provides satisfactory description of dissociative background

#### dimuons in UPC Pb+Pb: Results



#### Fraction of events with Xn0n, XnXn activites

• Measured fraction with different activity (0nXn, XnXn)

