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Black Holes

This year’s Nobel Prize in Physics focuses on black
holes, which are among the most enigmatic objects
in the Universe. The Prize 1s awarded for
establishing that black holes can form within the
theory of general relativity, as well as the discovery
of a supermassive compact object, compatible with
a black hole, at the centre of our galaxy
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Roger Penrose

Born: 8 August 1931, Colchester, United Kingdom

Affiliation at the time of the award: University of Oxford, Oxford, United Kingdom

Prize motivation: "for the discovery that black hole formation is a robust prediction of the
general theory of relativity."
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Black Holes Early History

Dark Star

John Michell (1783)
If there should really exist in nature any bodies, whose density is not less than that of the
sun, and whose diameters are more than 500 times the diameter of the sun, since their light
could not arrive at us; or if there should exist any other bodies of a somewhat smaller size,
which are not naturally luminous; of the existence of bodies under either of these
circumstances, we could have no information from sight; yet, if any other luminous bodies
should happen to revolve about them we might still perhaps from the motions of these
revolving bodies infer the existence of the central ones with some degree of probability, as
this might afford a clue to some of the apparent irregularities of the revolving bodies, which
would not be easily explicable on any other hypothesis; but as the consequences of such a
supposition are very obvious, and the consideration of them somewhat beside my present
purpose, | shall not prosecute them any further.
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ds? = S (x) dxtdx*

To General interval / curved spacetime metric
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A spatially infinite Universe Inside!
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A spatially infinite Universe Inside!
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Finite life time
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Penrose singularity theorem

GRAVITATIONAL COLLAPSE AND SPACE-TIME SINGULARITIES
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GRAVITATIONAL COLLAPSE AND SPACE-TIME SINGULARITIES
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(Received 18 December 1964)

The discovery of the quasistellar radio sources

has stimulated renewed interest in the question
of gravitational collapse. It has been suggested
by some authors® that the enormous amounts
of energy that these objects apparently emit
may result from the collapse of a mass of the
order of (10°-10°)M, to the neighborhood of
its Schwarzschild radius, accompanied by a
violent release of energy, possibly in the form
of gravitational radiation. The detailed math-
ematical discussion of such situations is dif-
ficult since the full complexity of general rela-
tivity is required. Consequently, most exact
calculations concerned with the implications
of gravitational collapse have employed the
simplifying assumption of spherical symme-
try. Unfortunately, this precludes any detailed
discussion of gravitational radiation—which
requires at least a quadripole structure.

The general situation with regard to a spher-
ically symmetrical body is well known.> For
a sufficiently great mass, there is no final
equilibrium state. When sufficient thermal
energy has been radiated away, the body con-
tracts and continues to contract until a physi-
cal singularity is encountered at »=0. As

measured by local comoving observers, the
body passes within its Schwarzschild radius
r=2m. (The densities at which this happens
need not be enormously high if the total mass
is large enough.) To an outside observer the
contraction to » =2m appears to take an infinite

time. Neverthel , the exi of a singu-
larity presents a serious problem for any com-
plete di ion of the physics of the interior
region.

The question has been raised as to whether
this singularity is, in fact, simply a proper-
ty of the high symmetry assumed. The mat-
ter collapses radially inwards to the single
point at the center, so that a resulting space-
time catastrophe there is perhaps not surpris-
ing. Could not the presence of perturbations
which destroy the spherical symmetry alter
the situation drastically? The recent rotating
solution of Kerr® also possesses a physical
singularity, but since a high degree of sym-
metry is still present (and the solution is al-
gebraically special), it might again be argued
that this is not representative of the general
situation.* Collapse without assumptions of
symmetry® will be discussed here.
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Ci der the time devel t of a Cauchy
hypersurface C*® representing an initial matter
distribution. We may assume Einstein’s field
equations and suitable equations of state gov-
erning the matter. In fact, the only assump-
tion made here about these equations of state
will be the non-negative definiteness of Einstein’s
energy expression (with or without cosmologi-
cal term). Suppose this matter distribution
undergoes gravitational collapse in a way which,
at first, qualitatively resembles the spherical-
ly symmetrical case. It will be shown that,
after a certain critical condition has been ful-

filled, deviations from spherical symmetry

cannot prevent space-time singularities from
arising. If, as seems justifiable, actual phys-

ical singularities in space-time are not to be
permitted to occur, the conclusion would ap-
pear inescapable that inside such a collapsing
object at least one of the following holds:

(a) Negative local energy occurs.® (b) Ein-
stein’s equations are violated. (c) The space-

time fold is i plete.” (d) The P
of space-time loses its meaning at very high
curvatures —possibly b of phe-

nomena.’ In fact (a) (b), (c), (d) are some-
what interrelated, the distinction being part-
ly one of attitude of mind.

Before examining the asymmetrical case,
consider a spherically symmetrical matter
distribution of finite radius in C* which col-
lapses symmetrically. The empty region sur-
rounding the matter will, in this case, be a
Schwarzschild field, and we can conveniently
use the metric ds? = =2drdv +dv*(1=-2m/r)
-73(d6® + sin*6d¢?), with an advanced time pa-
rameter v to describe it.* The situation is
depicted in Fig. 1. Note that an exterior ob-
server will always see matter outside » =2m,
the collapse through » =2m to the singularity
at » =0 being invisible to him.

After the matter has contracted within » =2m,
a spacelike sphere $* (£ =const, 2m > = const)
can be found in the empty region surrounding
the matter. This sphere is an example of what
will be called here a trapped surface ~defined
generally as a closed, spacelike, two-surface
T° with the property that the two systems of
null geodesics which meet 7° orthogonally con-
verge locally in future directions at 7°. Clear-
ly trapped surfaces will still exist if the matter
region has no sharp boundary or if spherical
symmetry is dropped, provided that the devia-
tions from the above situation are not too great.
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Indeed, the Kerr solutions with m >a (angular
ma) all p trapped surfaces,
whereas those for which m <a do not.® The
argument will be to show that the existence of
a trapped surface implies —irrespective of sym-
metry —that singularities necessarily develop.
The existence of a singularity can never be
inferred, however, without an assumption such
as 1 for the fold under con-
suentlon. It will be necessary, here, to sup-
pose that the manifold M.*, which is the future
time development of an initial Cauchy hyper-
surface C*® (past boundary of the M,* region),
is in fact null complete into the future. The
various assumptions are, more precisely, as
follows: (i) M.* is a nonsingular (+---) Rie-
mannian manifold for which the null half-cones

form two separate systems (“past” and “future”).

(ii) Every null geodesic in M.* can be extended
into the future to arbitrarily large affine param-
eter values (null completeness). (iii) Every
timelike or null geodesic in M,* can be extended

L U T
r-2m r-0 r-m

FIG. 1. Spherically symmetrical collapse (one
space dimension surpressed). The diagram essen-
tially also serves for the discussion of the asymmet-
rical case.

e —

VoLume 14, NUMBER 3

PHYSICAL REVIEW LETTERS

18 JANUARY 1965

into the past until it meets C, (Cauchy hyper-
surface condition). (iv) At every point of M *,
all timelike vectors {H satisfy (-R ,, + iRg v

=Ag , )tHtY = 0 (non-negativeness of local ener-

gy). (v) There exists a trapped surface 7% in
M,*. It will be shown here, in outline, that
(1), +++, (v) are together inconsistent.

Let F* be the set of points in M,* which can
be connected to 7* by a smooth timelike curve
leading into the future from 7% Let B® be the
boundary of F*. Local considerations show
that B* is null where it is nonsingular, being
generated by the null geodesic segments which
meet 7% orthogonally at a past endpoint and
have a future endpoint if this is a singularity
(on a caustic or crossing region) of B®. Let
1# (subject to 14,1V =0), p (= =4H. ), and lo|
{=[42( gyt v -{(l“ wW?*1%) be, respectively,

a future-pointing tangent vector, the conver-

gence, and the shear for theu null geodesics '’
1 area

and let A be a corresp infinitesi
of cross section of B%. Then [(ar2), l“] Iid
= =(AV3p), 1K= AVH(0|*+ 4) <0 where &
= =R ! 1Y [20 by (iv)]. Since 7° is trapped,
p>0at T, whence A becomes zero at a finite
affine distance to the future of 7% on each null
desic. Each geodesic thus rs a
caunuc. Hence B’ is compact (closed), being
generated by a compact system of finite seg-
ments. We may approximate B* arbitrarily
closely by a smooth, closed, spacelike hyper-
surface B**. Let K* denote the set of pairs
(P,s) with PEB** and 0 <s <1, Define a con-
tinuous map u: K*-M,* where, for fixed P,
u{(P,s)} is the past geodesic segment normal
to B** at P = u{(P,1)} and meeting C* [as it
must, by (ii1)] in the point w{(P,0)}. At each
point Q of u{K*}, we can define the degree d(Q)
of u to be the number of points of K* which
map to Q (correctly counted). Over any region
not containing the image of a boundary point
of K%, d(Q) will be constant. Near B**, u is
1-1, s0d(Q)=1. It follows that d(Q) = 1 near
C? also, whence the degree of the map B**

~C? induced by u when s =0 must also be uni-
ty. The impossibility of this follows from the
noncompactness of C*.

Full details of this and other related results
will be given elsewhere.

'F. Hoyle and W. A. Fowler, Monthly Notices Roy.
Astron. Soc. 125, 169 (1963); F. Hoyle, W. A, Fow-
ler, G. R. Burbidge, and E. M. Burbidge, Astrophys.
J. 139, 909 (1964); W. A, Fowler, Rev. Mod. Phys.
36, 545 (1964); Ya. B. Zel'dovich and L. D. Novikov,
Dokl. Akad. Nauk SSSR 155, 1033 (1964) [translation:
Soviet Phys.—~Doklady 9, 246 (1964)); I. S. Shklov-
skil and N. S. Kardashev, Dokl. Akad. Nauk SSSR
155, 1039 (1964) [translation: Soviet Phys.=Dok-
lady 9, 252 (1964)]; Ya. B. Zel'dovich and M. A.
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3R. P. Kerr, Phys. Rev. Letters 11, 237 (1963).

‘See also E. M. Lifshitz and I. M. Khalatnikov,
Advan. Phys. 12, 185 (1963).

*See also P. G. Bergmann, Phys. Rev. Letters
12, 139 (1964).

“The negative energy of a “C field” may be invoked
to avoid singularities: F. Hoyle and J. V. Narlikar,
Proc. Roy. Soc. (London) A278, 465 (1964). How-
ever, it is difficult to see how even the presence
of negative energy could lead to an effective “bounce”
if local causality is to be maintained.

"The “I'm all right, Jack” philosophy with regard
to the singularities would be included under this
heading!

*D. Finkelstein, Phys. Rev. 110, 965 (1959).

*The case m <a is interesting in that here a singu-
larity is “visible” to an outside observer. Whether
or not “visible” singularities inevitably arise under
appropriate circumstances is an intriguing question
not covered by the present discussion.
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/ 9 Expansion

do 1
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B3 Trapped surface: closed two-surface S with the property that for both
: 7 ingoing and outgoing congruences of null geodesics orthogonal to S,
the expansion is negative everywhere on S.
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Figure 8. Orbit of the star S2 (So2) on the sky (left panel) and in radial velocity (right panel).
Data from NTT/VLT and Keck are shown. Blue, filled circles, denote the NTT/VLT points and
open and filled red circles are the Keck data. The positions are relative to the radio position of
Sgr A* (black circle). The grey crosses are the positions of various Sgr A* infrared flares. From
Genzel, Eisenhauer & Gillessen (2010).
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Figure 5. Proper motions and vectors of selected stars surrounding the central compact radio
source Sgr A*, marked with a cross. The measurements were carried out over four years and
the offsets were determined with respect to the base epoch in 1994. From Eckart & Genzel

(1997).



