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Black Holes
This year’s Nobel Prize in Physics focuses on black 
holes, which are among the most enigmatic objects 
in the Universe. The Prize is awarded for 
establishing that black holes can form within the 
theory of general relativity, as well as the discovery 
of a supermassive compact object, compatible with 
a black hole, at the centre of our galaxy
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Black Holes Early History

John Michell (1783) 
If there should really exist in nature any bodies, whose density is not less than that of the 
sun, and whose diameters are more than 500 times the diameter of the sun, since their light 
could not arrive at us; or if there should exist any other bodies of a somewhat smaller size, 
which are not naturally luminous; of the existence of bodies under either of these 
circumstances, we could have no information from sight; yet, if any other luminous bodies 
should happen to revolve about them we might still perhaps from the motions of these 
revolving bodies infer the existence of the central ones with some degree of probability, as 
this might afford a clue to some of the apparent irregularities of the revolving bodies, which 
would not be easily explicable on any other hypothesis; but as the consequences of such a 
supposition are very obvious, and the consideration of them somewhat beside my present 
purpose, I shall not prosecute them any further.
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Smooth transition through  rg

ds2
Minkowski = du dv u = t − r , v = t + r

Outgoing Ingoing

ds2 = (1 −
rg

r ) dv2 − 2drdv − r2 (dθ2 + sin2 θ dϕ2)

v = t + r + rg log
r
rg

− 1

For Schwarzschild 

Finkelstein (1959), “Eddington-Finkelstein” coordinates

rg = 2GM
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Cauchy surface

G=1

Trapped surface

Trapped surface: closed two-surface S with the property that for both 
ingoing and outgoing congruences of null geodesics orthogonal to S, 
the expansion is negative everywhere on S. 

dθ
dλ

= −
1
2

θ2 − σ2 − Rμνkμkν

θ Expansion
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