Classical equations of motion and scattering amplitudes

FZU Fyzikální ústav Akademie věd České republiky Institute of Physics of the
Czech Academy of Sciences

Renann Lipinski Jusinskas

Division of Elementary Particle Physics
12.05.2022

Outline

- Tree level scattering;
- Perturbiner method in flat space;
- Scalars, Gluons, Gravitons;
- Curved backgrounds: (Anti) de Sitter;
- Loop amplitudes;

Goal
If you know how to derive an equation of motion, then you know how to compute tree level scattering!

Scattering amplitudes

- Main observables in QFT.
- Perturbation theory:
- Tree level (classical).
- Loops (quantum).

- Different techniques: Feynman diagrams, BCFW, CHY, etc.
- Here I will mostly focus on trees.

Tree graphs and classical fields

Textbook result:

Is there a way to make this easier?
Tree diagrams are recursive by nature*.
*as long as one leg is off-shell.

NEXT SLIDES MIGHT BE A BIT BORING BUT IMPORTANT!

Classical multiparticle solutions

As a warm up: $\quad \mathcal{L}=\frac{1}{2} \Phi \square \Phi+\frac{m^{2}}{2} \Phi^{2}+\frac{\lambda}{3!} \Phi^{3}$
Equation of motion: $\left(\square+m^{2}\right) \Phi=-\frac{\lambda}{2} \Phi^{2}$

Free case $(\lambda=0): \quad \Phi(x)=\phi e^{i k \cdot x} \quad$ and $\mathrm{k}^{2}=\mathrm{m}^{2}$

Multiple free particles: $\quad \Phi(x)=\sum_{p} \phi_{p} e^{i k_{p} \cdot x}$

It turns out we can solve the full e.o.m. recursively.

$$
\left(\square+m^{2}\right) \Phi=-\frac{\lambda}{2} \Phi^{2}
$$

- For example, take: $\Phi(x)=\phi_{1} e^{i k_{1} \cdot x}+\phi_{2} e^{i k_{2} \cdot x}+\phi_{12} e^{i k_{12} \cdot x}$

$$
\begin{aligned}
\left(\square+m^{2}\right) \Phi= & \left(m^{2}-k_{1}^{2}\right) \phi_{1} e^{i k_{1} \cdot x}+\left(m^{2}-k_{2}^{2}\right) \phi_{2} e^{i k_{2} \cdot x} \\
& +\left(m^{2}-k_{12}^{2}\right) \phi_{12} e^{i k_{12} \cdot x} \\
\Phi^{2}= & 2 \phi_{1} \phi_{2} e^{i k_{12} \cdot x}+\phi_{1}^{2} e^{2 i k_{1} \cdot x}+\phi_{2}^{2} e^{2 i k_{2} \cdot x}
\end{aligned}
$$

- We have a solution if:

$$
\phi_{12}=\frac{\lambda}{\left(k_{12}^{2}-m^{2}\right)} \phi_{1} \phi_{2} \quad \phi_{1}^{2}=\phi_{2}^{2}=0
$$

This solution generalizes to any number of single-particle states:

$$
\begin{aligned}
\Phi(x)=\sum_{P} \phi_{P} e^{i k_{P} \cdot x} & \begin{aligned}
k_{P}^{\mu} & =k_{p_{1}}^{\mu}+\ldots+k_{p_{n}}^{\mu} \\
s_{P} & \equiv k_{P}^{2} \\
\phi_{P}= & \frac{1}{2} \frac{\lambda}{\left(s_{P}-m^{2}\right)} \sum_{P=Q \cup R} \phi_{Q} \phi_{R}
\end{aligned} &
\end{aligned}
$$

- P denotes a ordered "word" formed by single particle labels. Ex:

$$
P=3, \quad P=25, \quad P=123, \quad P=379, \quad P=1467 .
$$

- The operation $\mathrm{P}=\mathrm{Q} \cup \mathrm{R}$ is called a deshuffle.

Ex: $P=25 \rightarrow(Q, R)=\{(2,5),(5,2)\}$

$$
P=123 \quad \rightarrow \quad(Q, R)=\{(1,23),(2,13),(3,12),(23,1),(12,3),(13,2)\}
$$

So what?! Where are the promised tree level amplitudes??

They are already there, waiting to be harvested.
$\mathcal{A}_{3} \equiv \phi_{1}\left(s_{23}-m^{2}\right) \phi_{23}$
$=\lambda \phi_{1} \phi_{2} \phi_{3}$
Cles

$$
\begin{aligned}
\mathcal{A}_{4} & \equiv \phi_{1}\left(s_{234}-m^{2}\right) \phi_{234} \\
& =\lambda \phi_{1}\left(\phi_{2} \phi_{34}+\phi_{3} \phi_{24}+\phi_{4} \phi_{23}\right) \\
& =\underline{\lambda^{2}} \phi_{1} \phi_{2} \phi_{3} \phi_{4}\left(\frac{1}{\left(s_{12}-m^{2}\right)}+\frac{1}{\left(s_{13}-m^{2}\right)}+\frac{1}{\left(s_{14}-m^{2}\right)}\right)
\end{aligned}
$$

Therefore, the multiparticle "currents" recursively defined via e.o.m.

$$
\begin{gathered}
\Phi(x)=\sum_{P} \phi_{P} e^{i k_{P} \cdot x} \\
\phi_{P}=\frac{1}{2} \frac{\lambda}{\left(s_{P}-m^{2}\right)} \sum_{P=Q \cup R} \phi_{Q} \phi_{R}
\end{gathered}
$$

can be used to compute n-point tree level amplitudes:

$$
\mathcal{A}_{n}=\lim _{s_{2 \ldots n} \rightarrow m^{2}} \phi_{1}\left(s_{2 \ldots n}-m^{2}\right) \phi_{2 \ldots n}
$$

OBS: No Feynman rules, tracking down factors, combinatorics, signs, ...

STARTING TO GET INTERESTING!

Classical multiparticle solutions: gluons

Equations of motion:

$$
\begin{aligned}
\partial^{\nu} F_{\mu \nu} & =i\left[A^{\nu}, F_{\mu \nu}\right] \\
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right]
\end{aligned}
$$

Compared to the scalars discussed, there are two main differences:
I) Quartic interactions:

$$
\begin{aligned}
\square A_{\mu}= & 2 i\left[A^{\nu}, \partial_{\nu} A_{\mu}\right]-i\left[A^{\nu}, \partial_{\mu} A_{\nu}\right]+\left[\left[A_{\mu}, A_{\nu}\right], A^{\nu}\right] \\
& +\partial_{\mu}\left(\partial^{\nu} A_{\nu}\right)-i\left[A_{\mu},\left(\partial^{\nu} A_{\nu}\right)\right]
\end{aligned}
$$

2) And?

The gauge symmetry can be used to set the Lorenz gauge

$$
\partial^{\mu} A_{\mu}=0
$$

such that the e.o.m. we have to solve is simply

$$
\square A_{\mu}=2 i\left[A^{\nu}, \partial_{\nu} A_{\mu}\right]-i\left[A^{\nu}, \partial_{\mu} A_{\nu}\right]+\left[\left[A_{\mu}, A_{\nu}\right], A^{\nu}\right]
$$

- Free case: $\quad \square A_{\mu}=0$

$$
A_{\mu}(x)=\epsilon_{\mu} e^{i k \cdot x}
$$

$$
\begin{gathered}
\text { with } \quad k_{\mu} k^{\mu}=k_{\mu} \epsilon^{\mu}=0 \\
\delta \epsilon_{\mu}=k_{\mu} \lambda
\end{gathered}
$$

- Multiple free gluons:

$$
A^{\mu}(x)=\sum_{p} \epsilon_{p}^{\mu} e^{i k_{p} \cdot x}
$$

And just like in the scalar case, we can have multiparticle solutions:

$$
\begin{aligned}
A^{\mu}(x)=\sum_{P} \mathcal{A}_{P}^{\mu} e^{i k_{P} \cdot x} & \mathcal{A}_{P}^{\mu} & =\frac{1}{s_{P}} \sum_{P=Q \cup R}\left[\mathcal{A}_{Q}^{\nu},\left(2 k_{R \nu} \mathcal{A}_{R}^{\mu}-k_{R}^{\mu} \mathcal{A}_{R \nu}\right)\right] \\
k_{P}^{\mu}=k_{p_{1}}^{\mu}+\ldots+k_{p_{n}}^{\mu} & & +\frac{1}{s_{P}} \sum_{P=Q \cup R \cup S}\left[\mathcal{A}_{Q}^{\nu},\left[\mathcal{A}_{R}^{\mu}, \mathcal{A}_{S \nu}\right]\right]
\end{aligned}
$$

Berends-Giele currents 1987

- The operation $\mathrm{P}=\mathrm{Q} \cup \mathrm{R} \cup \mathrm{S}$ is also a deshuffle, a simple extension of $\mathrm{P}=\mathrm{Q} \cup \mathrm{R}$.
- This is closer to the original perturbiner formulation.

For $\mathrm{P}=12$, we have:

$$
\begin{aligned}
\mathcal{A}_{12}^{\mu}= & \frac{1}{s_{12}} \sum_{12=Q \cup R}\left[\mathcal{A}_{Q}^{\nu},\left(2 k_{R \nu} \mathcal{A}_{R}^{\mu}-k_{R}^{\mu} \mathcal{A}_{R \nu}\right)\right] \\
& +\frac{1}{s_{12}} \sum_{12=Q \cup R \cup S}\left[\mathcal{A}_{Q}^{\nu},\left[\mathcal{A}_{R}^{\mu}, \mathcal{A}_{S \nu}\right]\right] \\
\mathcal{A}_{12}^{\mu}= & \frac{1}{s_{12}}\left(\left[\epsilon_{1}^{\nu},\left(2 k_{2 \nu} \epsilon_{2}^{\mu}-k_{2}^{\mu} \epsilon_{2 \nu}\right)\right]+\left[\epsilon_{2}^{\nu},\left(2 k_{1 \nu} \epsilon_{1}^{\mu}-k_{1}^{\mu} \epsilon_{1 \nu}\right)\right]\right) \\
& \left.\left.+\frac{1}{s_{12}} \sum_{12=Q \cup R \cup S} \mathcal{A}_{Q}^{\nu}, \mathcal{A}_{R}^{\mu}, \mathcal{A}_{S \nu}\right]\right]
\end{aligned}
$$

The three point amplitude is simply the three gluon vertex:

$$
\begin{aligned}
A(1,2,3) & =\lim _{s_{12} \rightarrow 0} \operatorname{Tr}\left[\epsilon_{3 \mu}\left(s_{12} \mathcal{A}_{12}^{\mu}\right)\right] \\
& \propto f_{a b c}\left\{\left[\left(k_{2}-k_{3}\right) \cdot \epsilon_{1}^{a}\right]\left(\epsilon_{2}^{b} \cdot \epsilon_{3}^{c}\right)+\operatorname{cyc}(1,2,3)\right\}
\end{aligned}
$$

For $\mathrm{P}=123$, we have:

$$
\begin{aligned}
\mathcal{A}_{123}^{\mu}= & \frac{1}{s_{123}}\left[\mathcal{A}_{12}^{\nu},\left(2 k_{3 \nu} \epsilon_{3}^{\mu}-k_{3}^{\mu} \epsilon_{3 \nu}\right)+\left[\epsilon_{3}^{\nu},\left(2 k_{12 \nu} \mathcal{A}_{12}^{\mu}-k_{12}^{\mu} \mathcal{A}_{12 \nu}\right)\right]\right. \\
& +\frac{1}{s_{123}}\left[\epsilon_{1}^{\nu},\left[\epsilon_{2}^{\mu}, \epsilon_{3 \nu}\right]\right]+\text { permutations }(1,2,3)
\end{aligned}
$$

The first line leads to exchange diagrams, while the second is the contact (four-point) one.

$$
A(1,2,3,4)=\lim _{s_{123} \rightarrow 0} \operatorname{Tr}\left[\epsilon_{4 \mu}\left(s_{123} \mathcal{A}_{123}^{\mu}\right)\right]=
$$

What I presented so far are called "colour-dressed" perturbiners.

- The are also "colour-stripped" perturbiners: $A^{\mu}(x)=\sum_{P} \mathcal{A}_{P}^{\mu} e^{i k_{P} \cdot x} T^{a_{P}}$
- They lead to partial amplitudes, with a very rich structure.
- Much easier to obtain computationally, and order matters.
- Instead of deshuffles, we have so-called deconcatenations.

Classical multiparticle solutions: gravitons

- Gravity is a whole different matter.
- Einstein field equations:

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\kappa T_{\mu \nu}
$$

- Gravitons: $g_{\mu \nu}=\tilde{g}_{\mu \nu}+h_{\mu \nu}$
- Infinity number of vertices! How to even define a recursion?

There is an elegant solution to this problem.

- Suppose there exists a perturbiner for gravity:

$$
g_{\mu \nu}(x)=\eta_{\mu \nu}+\sum_{P} H_{P \mu \nu} e^{i k_{P} \cdot x}
$$

- Now consider the inverse of the metric, satisfying: $g^{\mu \rho} g_{\rho \nu}=\delta_{\nu}^{\mu}$
- Then, we can take $g^{\mu \nu}(x)=\eta^{\mu \nu}-\sum_{P} I_{P}^{\mu \nu} e^{i k_{P} \cdot x}$ and find a solution:

$$
I_{P}^{\mu \nu}=\eta^{\mu \rho} \eta^{\nu \sigma} H_{P \rho \sigma}-\eta^{\nu \sigma} \sum_{P=Q \cup R} I_{Q}^{\mu \rho} H_{R \rho \sigma}
$$

- This way we can avoid the infinity number of vertices in gravity.

A taste of the solution (from ∞ to 5):

$$
\begin{aligned}
\frac{s_{P}}{2} H_{P \mu \nu}= & \sum_{P=Q \cup R} I_{Q}^{\rho \sigma}\left(i k_{P \rho} \Gamma_{R \mu \nu \sigma}-i k_{P \nu} \Gamma_{R \mu \rho \sigma}\right)+\eta^{\alpha \beta} \eta^{\rho \sigma}\left(\Gamma_{Q \nu \alpha \sigma} \Gamma_{R \mu \rho \beta}-\Gamma_{Q \rho \alpha \sigma} \Gamma_{R \mu \nu \beta}\right) \\
& +\sum_{P=Q \cup R \cup S} \eta^{\alpha \beta} I_{Q}^{\rho \sigma}\left(\Gamma_{R \rho \alpha \sigma} \Gamma_{S \mu \nu \beta}+\Gamma_{R \alpha \rho \beta} \Gamma_{S \mu \nu \sigma}-\Gamma_{R \nu \rho \beta} \Gamma_{S \mu \alpha \sigma}-\Gamma_{R \nu \alpha \sigma} \Gamma_{S \mu \rho \beta}\right) \\
& +\sum I_{Q}^{\rho \sigma} I_{R}^{\alpha \beta}\left(\Gamma_{S \nu \alpha \sigma} \Gamma_{T \mu \rho \beta}-\Gamma_{S \rho \alpha \sigma} \Gamma_{T \mu \nu \beta}\right) \\
& P=Q \cup R \cup S \cup T
\end{aligned}
$$

- n -point graviton amplitudes: (unimaginable using diagrams,

$$
\begin{aligned}
\mathcal{M}_{n} & \equiv \kappa \lim _{s_{2} \ldots n \rightarrow 0} s_{2 \ldots n} h_{1 \mu \nu} I_{2 \ldots n}^{\mu \nu} \\
& =\kappa \lim _{s_{2 \ldots n} \rightarrow 0} s_{2 \ldots n} h_{1}^{\mu \nu} H_{2 \ldots n \mu \nu}
\end{aligned}
$$ including matter interactions!)

- Phys.Rev.Lett. 127 (2021) 18, 181603

ONGOING PROJECTS

(Anti) de Sitter

- Scalar e.o.m.: $\quad g^{m n} \nabla_{m} \nabla_{n} \phi=m^{2} \phi+V(\phi)$

$$
\begin{aligned}
g^{m n} \nabla_{m} \nabla_{n} \phi & =g^{m n} \partial_{m} \partial_{n} \phi-g^{m n} \Gamma_{m n}^{p} \partial_{p} \phi \\
& =\frac{1}{R^{2}}\left[z^{2} \partial_{z}^{2}+(1-d) z \partial_{z} \phi+z^{2} \eta^{\mu \nu} \partial_{\mu} \partial_{\nu}\right] \phi
\end{aligned}
$$

- Free solutions: $\quad \phi(z, x)=\mathcal{K}(k, z) e^{i k \cdot x}$
- Multiparticle ansatz: $\phi(z, x)=\sum_{P} \underline{\Phi_{P}(z)} e^{i k_{P} \cdot x}$
- Generates Witten diagrams (scalars, gluons, gravitons)!

$$
\begin{aligned}
\left(\mathcal{D}_{P}^{2}-m^{2}\right) \mathcal{A}_{P \mu}= & i z k_{P \mu}\left[z \partial_{z}+(2-d)\right] \alpha_{P} \\
& +i\left(z \partial_{z}-d\right) \sum_{P=Q R}\left(\alpha_{Q} \mathcal{A}_{R \mu}-\alpha_{R} \mathcal{A}_{Q \mu}\right) \\
& -z \sum_{P=Q R}\left\{\left(k_{Q \mu} \alpha_{Q}+i \partial_{z} \mathcal{A}_{Q \mu}\right) \alpha_{R}-\left(k_{R \mu} \alpha_{R}+i \partial_{z} \mathcal{A}_{R \mu}\right) \alpha_{Q}\right\} \\
& -z \sum_{P=Q R}\left\{\left(k_{Q \mu}-k_{R \mu}\right)\left(\mathcal{A}_{Q} \cdot \mathcal{A}_{R}\right)+2 \mathcal{A}_{R \mu}\left(k_{R} \cdot \mathcal{A}_{Q}\right)-2 \mathcal{A}_{Q \mu}\left(k_{Q} \cdot \mathcal{A}_{R}\right)\right\} \\
& +\sum_{P=Q R S}\left\{\left(\alpha_{R} \mathcal{A}_{S \mu}-\alpha_{S} \mathcal{A}_{R \mu}\right) \alpha_{Q}+\mathcal{A}_{S \mu}\left(\mathcal{A}_{Q} \cdot \mathcal{A}_{R}\right)-\mathcal{A}_{R \mu}\left(\mathcal{A}_{Q} \cdot \mathcal{A}_{S}\right)\right\} \\
& -\sum_{P=Q R S}\left\{\left(\alpha_{Q} \mathcal{A}_{R \mu}-\alpha_{R} \mathcal{A}_{Q \mu}\right) \alpha_{S}+\mathcal{A}_{R \mu}\left(\mathcal{A}_{Q} \cdot \mathcal{A}_{S}\right)-\mathcal{A}_{Q \mu}\left(\mathcal{A}_{R} \cdot \mathcal{A}_{S}\right)\right\} \\
\alpha_{P}= & \frac{2}{s_{P} z} \sum_{P=Q R}\left\{\alpha_{R}\left(k_{R} \cdot \mathcal{A}_{Q}\right)-\alpha_{Q}\left(k_{Q} \cdot \mathcal{A}_{R}\right)\right\} \\
& +\frac{i}{s_{P} z} \sum_{P=Q R}\left\{\left(\mathcal{A}_{Q} \cdot \partial_{z} \mathcal{A}_{R}\right)-\left(\mathcal{A}_{R} \cdot \partial_{z} \mathcal{A}_{Q}\right)\right\} \\
& +\frac{1}{s_{P} z^{2}} \sum_{P=Q R S}\left\{2 \alpha_{R}\left(\mathcal{A}_{Q} \cdot \mathcal{A}_{S}\right)-\alpha_{S}\left(\mathcal{A}_{Q} \cdot \mathcal{A}_{R}\right)-\alpha_{Q}\left(\mathcal{A}_{R} \cdot \mathcal{A}_{S}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
A(1,2,3,4)= & \int d z\left\{\frac{1}{z^{d+1}}\left[\left(\mathcal{A}_{1} \cdot \mathcal{A}_{4}\right)\left(\mathcal{A}_{2} \cdot \mathcal{A}_{3}\right)-\left(\mathcal{A}_{1} \cdot \mathcal{A}_{3}\right)\left(\mathcal{A}_{2} \cdot \mathcal{A}_{4}\right)\right]\right. \\
& +\partial_{z}\left[\frac{1}{z^{d+1}} \frac{1}{s_{34}}\left[\left(\mathcal{A}_{3} \cdot \partial_{z} \mathcal{A}_{4}\right)-\left(\mathcal{A}_{4} \cdot \partial_{z} \mathcal{A}_{3}\right)\right]\left(\mathcal{A}_{1} \cdot \mathcal{A}_{2}\right)\right] \\
& +\frac{1}{s_{34}} \frac{1}{z^{d+1}}\left[\left(\mathcal{A}_{1} \cdot \partial_{z} \mathcal{A}_{2}\right)-\left(\mathcal{A}_{2} \cdot \partial_{z} \mathcal{A}_{1}\right)\right]\left[\left(\mathcal{A}_{3} \cdot \partial_{z} \mathcal{A}_{4}\right)-\left(\mathcal{A}_{4} \cdot \partial_{z} \mathcal{A}_{3}\right)\right] \\
& -\frac{1}{z^{d+1}} \frac{\left(k_{1}^{2}-k_{2}^{2}\right)\left(k_{3}^{2}-k_{4}^{2}\right)}{s_{34}}\left[z\left(\mathcal{A}_{1} \cdot \mathcal{A}_{2}\right)\right] \frac{1}{\left(\mathcal{D}_{34}^{2}-m^{2}\right)}\left[z\left(\mathcal{A}_{3} \cdot \mathcal{A}_{4}\right)\right] \\
& -\frac{\eta^{\mu \nu}}{z^{d+1}}\left[z\left(2 \mathcal{A}_{2 \mu}\left(k_{2} \cdot \mathcal{A}_{1}\right)-2 \mathcal{A}_{1 \mu}\left(k_{1} \cdot \mathcal{A}_{2}\right)+\left(k_{1 \mu}-k_{2 \mu}\right)\left(\mathcal{A}_{1} \cdot \mathcal{A}_{2}\right)\right)\right] \frac{1}{\left(\mathcal{D}_{34}^{2}-m^{2}\right)} \times \\
& \left.\times\left[z\left(2 \mathcal{A}_{4 \nu}\left(k_{4} \cdot \mathcal{A}_{3}\right)-2 \mathcal{A}_{3 \nu}\left(k_{3} \cdot \mathcal{A}_{4}\right)+\left(k_{3 \nu}-k_{4 \nu}\right)\left(\mathcal{A}_{3} \cdot \mathcal{A}_{4}\right)\right)\right]\right\} \\
& -[(34) \rightarrow(23)] .
\end{aligned}
$$

Loops are trees too!

The perturbiner can also generate trees with off-shell legs:

We can do this consistently
for gluons and gravitons
(including ghosts).

In case you are curious: BV actions and ghosts

- Yang-Mills theory:

$$
S=\int d^{d} x \operatorname{Tr}\left\{-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2}\left(\partial^{\mu} A_{\mu}\right)\left(\partial^{\nu} A_{\nu}\right)-\partial^{\mu} \bar{c}\left(\partial_{\mu} c-i\left[A_{\mu}, c\right]\right)\right\}
$$

- Gravity:

$$
\left.S=\frac{1}{2 \kappa} \int d^{d} x\left[\sqrt{-g} R+\left(\xi^{\rho} \partial_{\rho} g^{\mu \nu}-2 g^{\mu \rho} \partial_{\rho} \xi^{\nu}\right) g_{\mu \nu}^{*}+\left(\xi^{\rho} \partial_{\rho} \xi^{\mu}\right) \xi_{\mu}^{*}\right]+\chi_{\mu}^{*} \Lambda^{\mu}\right]
$$

Final remarks

- Classical e.o.m. are intimately connected to scattering amplitudes;
- Elegant and compact computations (and easy to code);
- Encompasses a broad set of theories (including gravity!);
- Extension to curved spaces (AdS, to appear soon);
- Off-shell recursions and loop integrands (to appear soon);
- Rich underlying structure (L-infinity and A-infinity algebras);
- Interplay with string theory: Phys.Rev.Lett. 127 (2021) 5, 05160i;

Thank you!

