The scattering of vector bosons in proton collisions and some future developments

the Large Hadron Collider

HÄDRÖNN CJOLIDDER

the LHC at home

https://natronics.github.io/science-hack-day-2014/lhc-map/

the Large Hadron Collider

the proton beam collision at the LHC

the beam collisions

Interaction
region
Bunch 1

$$
E_{c . m .}=\sqrt{s}=E_{p_{1}}+E_{p_{2}}
$$

$$
N=\int \mathcal{L} d t \sigma=L \sigma
$$

CMS Integrated Luminosity, pp, $\sqrt{s}=7,8,13 \mathrm{TeV}$

the particle detectors

the Compact Muon Solenoid, CMS

CMS DETECTOR
Total weight Overall diameter
Overall length
Magnetic field

14,000 tonnes
15.0 m 28.7 m 3.8 T

STEEL RETURN YOKE 12,500 tonnes

collision vertex

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
$\sim 76,000$ scintillating PbWO_{4} crystals

HADRON CALORIMETER (HCAL)
P. Govoni - VBS: status and prospects at the LHC - 29/09/22, FZU

the CMS cavern

the CMS detector in it

CMS particle identification

CMS event visualisation

expected processes at the LHC
proton - (anti)proton cross sections

a relevant example: $\mathrm{h} \rightarrow \mathrm{ZZ} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \mu^{-}$

the Higgs boson discovery

the standard model of elementary interactions

S. Weinberg, a model of leptons

bra is slightly larger than that (0.23%) obtained

We have chosen the phase of the R field to make C_{C} real, and can also adjust the phase of the L and
Q fields to make the vacum expectation value $\lambda=\left(\varphi^{\circ}\right)$ real. The "physical" φ fields are then φ^{-} 1264

We see that the rationalized electric charge
$e=g g^{\prime} /\left(g^{2}+g^{\prime \prime}\right)^{\mu / 2}$
(15)
by this model have to do with the couplings
bo this model have to do with the couplings
of the neutran intermediate meson $Z_{\text {I }}$ II Z_{μ}
does not couple to hadrons then the best lacace does not couple to hadrons the the best place
to look for effects of of Z_{μ} is in electron-neutron scattering. Applying a Fierz transformation
to the W-exchange terms, the total effective and, assuming that W_{μ} couples as usual to had
rons and muons, the usual coupling constant of weak interactions is is given by
of

$$
G_{W} / \sqrt{2}=g^{2} / 8 M_{W}{ }^{2}=1 / 2 \lambda^{2} .
$$

$$
\text { Note that then the } e-\varphi \text { coupling constant is }
$$

$$
G_{e}=M_{e} e^{\lambda=2^{1 / 4} M_{e} G_{W} W_{1}^{1 / 2}=2.07 \times 10^{-6}} .
$$

The couping of φ_{1} to muons is stronger by a
factor $M_{\mu} M_{e}$, but still very weak. Note alfactor M_{μ} / M_{e} e but still very weak. Note al-
so that (14) gives g and g^{\prime} larger than e, so
 $M_{Z}>M_{W}$ and $M_{Z}>80$ Bev.
The only unequivocal ne
 if $g \gg e$ then $g \gg g^{\prime}$, and this is just the usual
$-\nu$ scattering matrix element times an extra
. factor $\frac{3}{2}$. If $g \propto e$ then $g \ll g^{\prime \prime}$, and the vector
 er than $\frac{3}{3}$. of course our model has too man
arbhitray features for these predictions to

1265

is the story over?

what now? new physics searches

[^0]
precision measurements

vector boson scattering

- interaction between vector bosons
- which are irradiated from quarks in the proton beams
- final state composed of the vector boson decay products + two jets due to the irradiating quarks

the signal

- several different Feynman diagrams contribute to the interaction
- at leading order (LO) in perturbation theory, the interactions are electroweak

the process cross-section

a semi-leptonic final state

- out of the two vector bosons, one decays into quarks and the other one into a charged lepton + neutrino pair
- large V branching ratio into quarks means large statistics with respect to fully leptonic channels
- large backgrounds, as only one charged lepton is present in the final state

the main backgrounds to this process

- at LO in perturbation theory, due to processes which produce the same final state with different processes
- due to mistakes in the particle reconstruction with the event information

QCD-WV

QCD ttbar

diagram 4
QCD=3, QED=2
W+ jets

background reduction

vector boson identification

the quarks due to the V decay originate two jets

the quarks due to the V decay are close enough to originate one single large jet

signal extraction: a deep neural network

- many variables that characterise the signal combined into a single discriminant
- choose variables according to their importance (explainable AI)

Variable	Resolved	Boosted	SHAP ranking	
Lepton pseudorapidity	\checkmark	\checkmark	13	12
Lepton transverse momentum	\checkmark	\checkmark	16	10
Zeppenfeld variable for the lepton	\checkmark	\checkmark	2	2
Number of jets with $p_{\mathrm{T}}>30 \mathrm{GeV}$	\checkmark	\checkmark	7	3
Leading VBS tag jet p_{T}	-	\checkmark	-	11
Trailing VBS tag jet p_{T}	\checkmark	\checkmark	7	6
Pseudorapidity interval $\Delta \eta_{\mathrm{jj}}^{\text {VBS }}$ between tag jets	\checkmark	\checkmark	4	4
Quark/gluon discriminator of leading VBS tag jet	\checkmark	\checkmark	9	7
Azimuthal angle distance between VBS tag jets	\checkmark	-	10	-
Invariant mass of the VBS tag jets pair	\checkmark	\checkmark	1	1
p_{T} of the leading $\mathrm{V}_{\text {had }}$ jet	\checkmark	-	14	-
p_{T} of the trailing $\mathrm{V}_{\text {had }}$ jet	\checkmark	-	12	-
Pseudorapidity difference between $\mathrm{V}_{\text {had }}$ jets	\checkmark	-	8	-
Quark/gluon discriminator of the leading $\mathrm{V}_{\text {had }}$ jet	\checkmark	-	3	-
Quark/gluon discriminator of the trailing $\mathrm{V}_{\text {had }}$ jet	\checkmark	-	5	-
p_{T} of the AK8 $\mathrm{V}_{\text {had }}$ jet candidate	-	\checkmark	-	8
Invariant mass of $\mathrm{V}_{\text {had }}$	\checkmark	\checkmark	11	5
Zeppenfeld variable for $\mathrm{V}_{\text {had }}$	-	\checkmark	-	9
Centrality		\checkmark	\checkmark	15

W+jets estimate

- measure the background crosssection where no signal is expected
- control region: sit away from the hadronic W invariant mass
$\sim 85 \mathrm{GeV}-\mathrm{mv}_{\mathrm{mideband}}^{\text {signal }}$

top background estimate

- select events with at least one b-quark in the final state

event classification

- The VBS cross-section is

 measured with a joint fit of all signal and control regions- accounting for all correlations among the various regions

Object selectionPhase space selections

the fit result

the fit result

uncertainties on the signal strength

Uncertainty source	$\Delta \mu_{\mathrm{EW}}$
Statistical	0.12
Limited sample size	0.10
Normalization of backgrounds	0.08
Experimental	
\quad b-tagging	0.05
Jet energy scale and resolution	0.04
\quad Integrated luminosity	0.01
Lepton identification	0.01
\quad Boosted V boson identification	0.01
\quad Total	0.06
Theory	
\quad Signal modeling	0.09
\quad Background modeling	0.08
\quad Total	0.12
Total	0.22

consistency of the Standard Model

- test whether the data and backgrounds behave as expected by the theory
- two-dimensional fit: QCD- and EWinduced VBS (at LO in perturbation theory) cross-sections fitted together
- it's a simplistic extension of the standard model

more VBS results

+ ATLAS corresponding set of results

indirect measurements

- (precise) measurement of low-energy effects of a high energy unknown theory

historical example: fermi interactions

the effective field theory approach

the same EFT can match many models!

the UV theory is known the UV theory is unknown
but its properties can be inferred from measurements

the EFT reproduces the full theory at $E \ll \Lambda$ makes the calculation easier

the Effective Field Theory (EFT) model

$$
\mathcal{L}_{\text {SMEFT }}=\mathcal{L}_{S M}+\sum_{i} \frac{c_{i}}{\Lambda^{2}} O_{i}^{(6)}+\frac{c_{i}}{\Lambda^{4}} o_{i}^{(8)}+\ldots
$$

$\square c_{i}$ Wilson coefficients
^ unknown NP energy scale

- 2499 additional parameters at dimension-6
- may be reduced significantly with reasonable requirements (e.g. lepton universality)
- odd terms would break symmetries, like the lepton and barion number conservation

existing studies

http://go.web.cern.ch/go/7LSN ATL-PHYS-PUB-2021-010

- calculated in simplified configurations
("anomalous couplings")
- on a small sub-set of operators
- often derived from single analysis channels

in the VBS case

https://arxiv.org/abs/1905.07445

a study of VBS sensitivity

- parton-level simulated study of the VBS impact in constraining dimension-6 EFT operators in the SMEFT framework
- access to several operators, thanks to the complexity of the VBS diagrams

$\mathrm{Q}_{q q}^{(1)}=\left(\bar{q}_{p} \gamma_{\mu} q_{p}\right)\left(\bar{q}_{r} \gamma^{\mu} q_{r}\right)$	$\mathrm{Q}_{q q}^{(1,1)}=\left(\bar{q}_{p} \gamma_{\mu} q_{r}\right)\left(\bar{q}_{r} \gamma^{\mu} q_{p}\right)$	
$\mathrm{Q}_{q 9}^{(3)}=\left(\bar{q}_{p} \gamma_{\mu} \sigma^{i} q_{p}\right)\left(\overline{\bar{q}}_{r} \gamma^{\mu} \sigma^{i} q_{r}\right)$	$\mathrm{o}_{q q}^{(3,1)}=\left(\bar{q}_{p} \gamma_{\mu} \sigma^{i} q_{r}\right)\left(\bar{q}_{r} \gamma^{\mu} \sigma^{i} q_{p}\right)$	
$\mathrm{Q}_{\\| l}^{(1)}=\left(\bar{l}_{p} \gamma_{\mu} l_{r}\right)\left(\bar{l}_{r} \gamma^{\mu} l_{p}\right)$	$\mathrm{Q}_{W}=\varepsilon^{\text {ijk }} W_{\mu}^{i \nu} W_{\nu}^{j \rho} W_{\rho}^{\mathrm{k}} \mu$	
$\mathrm{Q}_{H D}=\left(H^{\dagger} D_{\mu} H\right)\left(H^{\dagger} D^{\mu} H\right)$	$\mathrm{Q}_{H W}=\left(H^{\dagger} H\right) W_{\mu \nu}^{i} W^{\prime \mu \nu}$	
$\mathrm{Q}_{\text {Hwb }}=\left(H^{\dagger} \sigma^{i} H\right) \mathrm{w}_{\mu \nu}^{i} \mathrm{~B}^{\mu \nu}$	$\mathrm{Q}_{\mathrm{H} \square}=\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)$	
	$\mathrm{Q}_{H l}^{(1)}=\left(H^{\dagger} i \overleftrightarrow{\mathbf{D}_{\mu}} H\right)\left(\bar{l}_{p} \gamma^{\mu} l_{p}\right)$	
$Q_{H O}^{(3)}=\left(H^{\dagger} i_{\mu}^{i}{ }_{\mu}^{\prime} H\right)\left(\bar{q}_{p} \sigma^{i} \gamma^{\mu} q_{p}\right)$	$\mathrm{Q}_{H a}^{(1)}=\left(H^{\dagger} \overleftrightarrow{i d}_{\mu} H\right.$) $\left(\bar{q}_{p} \gamma^{\mu} q_{p}\right)$	

$$
N \propto \overbrace{\left|\mathcal{A}_{S M}\right|^{2}}^{\text {SM }}+\sum_{\alpha} \frac{c_{\alpha}}{\Lambda^{2}} \cdot \underbrace{2 \operatorname{Re}\left(\mathcal{A}_{S M} \mathcal{A}_{Q_{\alpha}}^{\dagger}\right)}_{\text {Lin }}+\frac{c_{\alpha}^{2}}{\Lambda^{4}} \cdot \overbrace{\left|\mathcal{A}_{Q_{\alpha}}\right|^{2}}^{\text {Quad }}+\sum_{\alpha, \beta} \frac{c_{\alpha} c_{\beta}}{\Lambda^{4}} \cdot \underbrace{\operatorname{Re}\left(\mathcal{A}_{Q_{\alpha}} \mathcal{A}_{Q_{\beta}}^{\dagger}\right)}_{\text {Mix }}
$$

processes considered

- major irreducible backgrounds included
- LHC-like selections applied
- Same-sign WW: p p > $\mathrm{e}^{+} \nu_{\mathrm{e}} \mu^{+} \nu_{\mu} \mathrm{j} \mathrm{j}$
- Opposite-sign WW (QCD): pp $>\mathrm{e}^{+} \nu_{\mathrm{e}} \mu^{-} \overline{\nu_{\mu}} \mathrm{j} \mathrm{j}$
- WZ+2j(QCD): $\mathrm{p} p>\mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \nu_{\mu} \mathrm{j} j$
- ZZ $+2 \mathbf{j}^{j(Q C D): ~} \mathrm{p} p>\mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \mu^{-}$
- ZV+2j(QCD): $\mathrm{p} p>\mathrm{zw}^{+}\left(\mathrm{w}^{-}, \mathrm{z}\right)>\mathrm{l}^{+} \mathrm{l}^{-} \mathrm{j} j \mathrm{j} j$
- WW: $\mathrm{p} \mathrm{p}>\mathrm{e}^{+} \nu_{\mathrm{e}} \mu^{-} \overline{\nu_{\mu}}$
not VBS: used as a comparison term

processed involved - EFT sensitivity

- Full $\mathbf{2} \boldsymbol{\rightarrow} \mathbf{6}$ VBS processes generated including non-resonant diagrams.

proc / op	$Q_{H D}$	$Q_{H \square}$	$Q_{H W B}$	$Q_{H q}^{(1)}$	$Q_{H q}^{(3)}$	$Q_{H W}$	Q_{W}	$Q_{H l}^{(1)}$	$Q_{H l}^{(3)}$	$Q_{l l}^{(1)}$	$Q_{q q}^{(3)}$	$Q_{q q}^{(3,1)}$	$Q_{q q}^{(1,1)}$	$Q_{q q}^{(1)}$	$Q_{I l}$
SSWW-EW	\checkmark	(\checkmark)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(\checkmark)						
OSWW-EW	\checkmark	(\checkmark)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	(\checkmark)						
WZ-EW	\checkmark	(\checkmark)													
ZZ-EW	\checkmark	(\checkmark)													
ZV-EW	\checkmark														
WW	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	(\checkmark)	\checkmark	\checkmark					
ZV-QCD	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					
OSWW-QCD	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					
WZ-QCD	\checkmark		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark					(\checkmark)
ZZ-QCD	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark					(\checkmark)

sensitivity determination

- fit the most sensitive variable with Wilson coefficients as free parameters

constraints on individual coefficients

\square - one Wilson coefficient free two float at a time (the others set to zero)

- most stringent limits on four-fermion operators
- competitive with di-boson studies for some operators
- $Q_{H l}^{(1)}, Q_{H W}, Q_{H \square}, Q_{H D}$ only constrained by VBS.
- $Q_{H l}^{(1)}$ mostly constrained by VBS WZ/ZZ

profiled constraints

- All parameters free to float in likelihood maximisation
- Individual limits on operators obtained by profiling the other Wilson coefficients

including the background in the fit

$$
\begin{gathered}
N(E W K+Q C D) \propto S M^{E W K}+S M^{Q C D}+\frac{c_{\alpha}}{\Lambda^{2}}\left(\operatorname{Lin}^{E W K}+\operatorname{Lin}^{Q C D}\right)+\frac{c_{\alpha}^{2}}{\Lambda^{4}}\left(Q u a d^{E W K}+Q u a d^{Q C D}\right) \\
N(E W K) \propto S M^{E W K}+S M^{Q C D}+\frac{c_{\alpha}}{\Lambda^{2}} L i n^{E W K}+\frac{c_{\alpha}^{2}}{\Lambda^{4}} Q u a d^{E W K}
\end{gathered}
$$

$\pm 68 \%$ EWK+QCD
$\pm 95 \%$ EWK+QCD
$\pm 68 \%$ EWK

- the analysis sensitivity is never reduced by including the dependence of the irreducible backgrounds on EFT operators

multi-dimensional limits

- two Wilson coefficients free to float simultaneously (the others are set to zero)
- the combination and complementarity of different analysis channels allows for a narrower limit area definition

multi-dimensional limits

- Flat directions resolved thanks to combination of different channels or by the impact of $\mathrm{O}\left(\Lambda^{-4}\right)$ terms
- Linear-only limits sometimes are better (differently from 1D): the mixed interference between dim-6 amplitudes can mitigate deviations

in the long run

as of today, LHC collected about $\mathbf{5 \%}$ of the total dataset it's expected to deliver

testing the standard model

- the combination of information from several different analyses is necessary
- to constrain the largest number of EFT operators is possible
- to avoid biases in the results interpretation (some operators may have very similar effects in some final states, and different ones in others)

longitudinally-polarised VBS

- vector boson masses arise from the interaction with the Higgs boson, that provides them with a longitudinal polarisation as well
- the longitudinal component of the scattering is expected to be the most sensitive to any new physics in the electroweak symmetry breaking

Process	$\sigma \mathcal{B}(\mathrm{fb})$	Theoretical prediction (fb)
$\mathrm{W}_{\mathrm{L}}^{ \pm} \mathrm{W}_{\mathrm{L}}^{ \pm}$	$0.32_{-0.40}^{+0.42}$	0.44 ± 0.05
$\mathrm{~W}_{\mathrm{X}}^{ \pm} \mathrm{W}_{\mathrm{T}}^{ \pm}$	$3.06_{-0.48}^{+0.51}$	3.13 ± 0.35
$\mathrm{~W}_{\mathrm{L}}^{ \pm} \mathrm{W}_{\mathrm{X}}^{ \pm}$	$1.20_{-0.53}^{+0.56}$	1.63 ± 0.18
$\mathrm{~W}_{\mathrm{T}}^{ \pm} \mathrm{W}_{\mathrm{T}}^{ \pm}$	$2.11_{-0.47}^{+0.49}$	1.94 ± 0.21

some projections

conclusions

- vector boson scattering stems from the electroweak symmetry breaking and is tightly connected with the physics of the Higgs sector
- its low cross-section and complex final state make it a challenge at the LHC, from the point of view of the event reconstruction, signal definition and isolation
- we will be able to fully exploit its potential with the whole LHC dataset
- fully embedding it in the search for new physics through precision measurements, within the EFT paradigm
- an interesting and useful playground for training of young physicists!

conclusions

- vector boson scattering stems from the electroweak symmetry breaking and is tiahtly connected with the nhvsics of the Hiaas sector

There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.
~ William Thomson (Lord Kelvin), 1900

additional material

the variable choice in the EFT fits

Op.	SSWW+2j		OSWW+2j		WZ+2j		ZZ+2j		ZV+2j		WW	
	L	L+Q										
$c_{H l}^{(1)}$	-	$m_{l l}$	-	MET	$m_{e e}{ }^{\dagger}$	$m_{W Z} \mathrm{P}$	$\mathrm{p}_{T, e^{-} \mu^{-}}{ }^{\dagger}$	$p_{T, e^{-} \mu^{-}}{ }^{\dagger}$	$p_{T, j_{1}}^{V}$	$p_{T, j_{1}}^{V}$	$p_{T, 1}$	MET
$c_{\text {Hq }}^{(1)}$	$p_{T, j}$	$p_{T, j^{1}}$		$m_{l l}$	$m_{j j}$	$p_{T, j}$	$m_{j j}$	$p_{T,{ }^{1}}$	$m_{j j}^{\text {VBS }}$	$m_{j j}^{V B S}$	MET	MET
$c_{\text {Hq }}^{(3)}$	$\Delta \phi_{j j}$	$\Delta \phi_{j j}$		$m_{l l}$	$\Delta \phi_{j j}{ }^{\dagger}$	$p_{T, 11}$	$\Delta \phi_{j j}^{\dagger}$	$p_{T, 14}$	$p_{T, j_{2}}^{V B S}$	$p_{T, j_{2}}^{V B S}$	$p_{T, 1}$	$p_{T, 11}$
$c_{99}^{(3)}$	$m_{l l}{ }^{\dagger}$	$p_{T, j^{2}}$		$p_{T, j^{2}}$	$m_{j j}$	$p_{T, j^{2}}$	$m_{j j}$	$p_{T,{ }^{1}}$	$p_{T, 11^{\dagger}}$	$\Delta \phi_{j j}^{\text {VBS }}$	-	-
$c_{q q}^{(3,1)}$	$\Delta \phi_{j j}$	$p_{T, j^{2}}$		$p_{T, j^{2}}$	$m_{j j}$	$p_{T, j^{2}}$	$m_{j j}$	$p_{T,{ }^{1}}$	$\Delta \eta_{j j}^{V} \dagger$	$\Delta \phi_{\mathrm{jj}}^{\mathrm{VBS}}$	-	-
$c_{q q}^{(1,1)}$	$\Delta \phi_{j j}$	$p_{T, j^{1}}$		$p_{T, j^{2}}$	$p_{T, j}{ }^{2}$	$p_{T, j^{1}}$	$p_{T, j^{2}}$	$p_{T, j^{2}}$	$\Delta \phi_{j j}^{V B S}$	$p_{T, j_{1}}^{V B S}$	-	-
$c_{q q}^{(1)}$	$p_{T, j^{1}}$	$p_{T, j^{1}}$		$p_{T, j^{2}}$	$\Delta \phi_{j j}^{V B S}$	$p_{T, j_{1}}^{V B S}$	-	-				
$c_{H l}^{(3)}$	$\Delta \eta_{j j}{ }^{\dagger}$	$\Delta \eta_{j j}{ }^{\dagger}$	$m_{j j}^{\dagger}$	$m_{j j}{ }^{\dagger}$	$m_{j j}{ }^{\dagger}$	$m_{j j}$	$m_{j j}{ }^{\dagger}$	$m_{j j}{ }^{\dagger}$	$\Delta \eta_{j j}^{V}$	$\Delta \eta_{j j}^{V}$	$m_{l l}{ }^{\dagger}$	$m_{l l}{ }^{\dagger}$
$C_{H D}$	$p_{T, j}{ }^{1}$	$m_{l l}$	$\Delta \eta_{j j}$	$\Delta \eta_{j j}$	$m_{e e}$	$\Delta \eta_{j j}{ }^{\dagger}$	$p_{T, e^{+} \mu^{+}}$	$p_{T, e^{+} \mu^{+}}{ }^{\dagger}$	$p_{T, l^{2}}$	$p_{T, l^{2}}$	$p_{T, 1}$	$p_{T, 11}$
$c_{l l}^{(1)}$	$m_{j j}{ }^{\dagger}$	$m_{j j}{ }^{\dagger}$	$m_{j j}^{\dagger}$	$m_{j j}{ }^{\dagger}$	$m_{j j}{ }^{\dagger}$	$m_{j j}$	$m_{j j}{ }^{\dagger}$	$m_{j j}{ }^{\dagger}$	$\Delta \eta_{j j}^{V \dagger}$	$\Delta \eta_{j j}^{V \dagger}$	$p_{T, l l}{ }^{\dagger}$	$p_{T, l^{2}}$
CHWB	$p_{T, j^{1}}$	$p_{T, j^{1}}$	$\Delta \eta_{j j}$	$m_{l l}$	$m_{e e}$	$m_{W Z}$	$m_{\mu \mu}^{\dagger}$	$\Delta \eta_{j j}$	$\Delta \eta_{j j}^{V}$	$\Delta \eta_{j j}^{V}$	$p_{T, 1}$	MET
$\mathrm{C}_{\mathrm{H} \square}$	$p_{T, j^{1}}$	$m_{l l}$	$m_{l l}$	$m_{l l}$	-	$m_{W Z}$	-	$\Delta \eta_{j j}$	$p_{T, j_{2}}^{V}$	$p_{T, j_{2}}^{V}$	-	-
C_{HW}	$\Delta \phi_{j j}$	$m_{l l}$	$\Delta \phi_{j j}$	$m_{l l}$	$\eta_{13}{ }^{\dagger}$	$m_{W Z}$	$m_{j j}$	$m_{4 l}$	$p_{T, j_{1}}^{V B S}$	$p_{T, j_{2}}^{V}$	-	-
C_{W}	$\Delta \phi_{j j}$	$p_{T, 11}$	$\Delta \phi_{j j}$	$m_{l l}$	$p_{T, 1}$	$m_{\text {WZ }}$	$\Delta \phi_{j j}$	$p_{T, 14}$	$\Delta \phi_{j j}^{V B S} \dagger$	$\Delta \phi_{j j}^{\text {VBS } \dagger}$	MET	MET

Observables ranking change from Lin to Lin + Quad.

Best observable group usually match prior knowledge about the operator.

SMEFT corrections to propagators

$N_{\alpha}^{i n t}=N_{\alpha, \text { vert. }}^{i n t}+N_{\alpha, \delta \Gamma_{W}}^{i n t}+N_{\alpha, \delta \Gamma_{Z}}^{i n t}+N_{, \delta \Gamma_{H}}^{i n t}$ versus $N_{\alpha}^{i n t}=N_{\alpha, \text { vert }}^{i n t}$

Limits change up to a factor ~ 5

$$
\begin{aligned}
\delta \Gamma_{W} / \Gamma_{W}^{S M} & =\frac{4}{3} c_{H q}^{(3)}-\frac{4}{3} c_{H l}^{(3)}-c_{l l}^{(1)}, \\
\delta \Gamma_{Z} / \Gamma_{Z}^{S M} & =1.61 c_{H q}^{(3)}-1.37 c_{H l}^{(3)}+c_{l l}^{(1)}+0.47 c_{H q}^{(1)} \\
& -0.18 c_{H l}^{(1)}-0.07 c_{H D}+0.46 c_{H W B}, \\
\delta \Gamma_{H} / \Gamma_{H}^{S M} & =0.36 c_{H q}^{(3)}-2.62 c_{H l}^{(3)}+1.40 c_{l l}^{(1)}+1.83 c_{H \square} \\
& -0.46 c_{H D}-1.26 c_{H W}+1.23 c_{H W B}
\end{aligned}
$$

Mass terms and decay widths of the SM particles generally receive corrections from \mathcal{L}_{6} operators.
$\left\{m_{W}, m_{Z}, G_{F}\right\} \rightarrow \delta m_{W}=0, \delta m_{Z}=0, \Gamma \neq 0$.
Propagator corrections relevant only if close to the mass shell. Corrections for different ops share the same shape except for normalization.

vector boson scattering unitarity

simple approach: search for anomalies

$$
\mathcal{M}_{\text {gauge }} \simeq i \frac{g^{2}}{4 M_{W}^{2}}[s+t], \quad \mathcal{M}_{H i g g s} \simeq-i \frac{g^{2}}{4 M_{W}^{2}}[s+t](\delta)
$$

the standard model particles

Tre generazioni
della materia (fermioni)

particle detection in CMS

LHC bunches scheme

- beam composed of single packets (bunches) of particles, organised in "trains"

number of bunches	n_{b}	2556 at most
revolution frequency	f_{rev}	11 kHz
particles per bunch	N_{1}, N_{2}	$1.15 \cdot 10^{11}$
bunch crossing frequency		40 MHz

online vs offline reconstruction

HLT

- fast and solid, to
identify events interesting for physics during data acquisition

- slow and careful, to perform the data analysis

muons: the clean ones

electrons: the radiating ones

photons: the isolated ones

jets: the tough ones

boosted jets

- hadronic 2-prong or 3-prong decay of boosted particle originate collimated objects
- reconstructed as single jets
- grooming: clean the jets up by removing
- tagging: identify the features of hard decays and cut on them
$250<\mathrm{p}_{\mathrm{T}} / \mathrm{GeV}<300 \mathrm{GeV}, 65<\operatorname{mass} / \mathrm{GeV}<95$
$\sqrt{s}=13$ TeV, Pythia 8
dedicated variables to identify jets originated by the shower of more than one particle (arXiv:1901.10342)

neutrinos: missing transverse energy

semi-leptonic final states

- gain in statistical precision

- at high energies the reducible backgrounds significantly loose importance

Higgs vacuum stability

$\mathrm{H}^{ \pm \pm}$exclusion

- VBF production of $\mathbf{H}^{ \pm \pm} \rightarrow \mathbf{W} \pm \mathbf{W}^{ \pm}$

[^0]: $W^{\prime} \rightarrow W Z$ ($q \bar{q} q \bar{q}$, HVT model B) $\mathrm{W}^{\prime} \rightarrow \mathrm{WZ}$ (vvā, HVT model B) $\mathrm{W}^{\prime} \rightarrow \mathrm{WZ}$ ($\ell v a \bar{q}$, HVT model B) $\mathrm{W}^{\prime} \rightarrow \mathrm{WZ}$ (elqव̄, HVT model B) $\mathrm{W}^{\prime} \rightarrow \mathrm{WH}$ (qव̄bb, HVT model B) $\mathrm{W}^{\prime} \rightarrow \mathrm{WH}$ ((थvb̄̆, HVT model B) $\mathrm{W}^{\prime} \rightarrow$ WH ($q \bar{q} \tau \bar{\tau}$, HVT model B) W' (all final states, HVT model B) $\mathrm{Z}^{\prime} \rightarrow \mathrm{WW}(q \bar{q} q \bar{q}, \mathrm{HVT}$ model B) $Z^{\prime} \rightarrow W W$ ($\ell v q \bar{q}$, HVT model B) $Z^{\prime} \rightarrow Z H((\ell \ell, v v) b \bar{b}$, HVT model B) $Z^{\prime} \rightarrow Z H$ (qव̄b̄̄, HVT model B) $Z^{\prime} \rightarrow Z H$ (qqव $\tau \bar{\tau}$, HVT model B) Z^{\prime} (all final states, HVT model B) $\mathrm{V}^{\prime} \rightarrow \mathrm{WV}$ (qq$q \bar{q}, \mathrm{HVT}$ model B)
 $\mathrm{V}^{\prime} \rightarrow \mathrm{VH}$ (qव̆bБ̄, HVT model B) $V^{\prime} \rightarrow V H$ ($q \bar{q} \tau \bar{\tau}, \mathrm{H}^{2} \mathrm{VT}$ model B) V' (all final states, HVT model B) Bulk G \rightarrow WW ($\ell v q q$ q)
 Bulk $G \rightarrow Z Z$ (elvo) Bulk $G \rightarrow Z Z$ (elqā) Bulk G \rightarrow ZZ (vvaq̃) Bulk $G \rightarrow H H$ (b̄̄b̄̆) Bulk $G \rightarrow H H$ ($\ell v a q ̄ b \bar{b}, \ell \nu \ell v b \overline{)})$ Bulk G (all final states) Radion $R \rightarrow H H(q \bar{q} \tau \bar{\tau}, \Lambda=1 \mathrm{TeV})$ Radion $\mathrm{R} \rightarrow \mathrm{HH}$ (bб̄bَ, $\wedge=3 \mathrm{TeV}$) Radion $\mathrm{R} \rightarrow \mathrm{HH}$ ($\ell \mathrm{vaq} \mathrm{q} \mathrm{b}, \ell \cup \ell \nu \mathrm{b} \overline{,}, \wedge=3 \mathrm{TeV}$)

