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Challenges in VM production studies

✓  Quarkonia production in pp/pA, as well as high pT forward particle  
     production in pA, traditionally are very important probes for QCD dynamics 
     e.g. QCD factorisation, gluon resummations, higher order PT and non-PT effects, medium, CGC etc

✓  J/psi puzzle: highly uncertain production and evolution in hot environment  
     What is the dominate QCD mechanism and role of the medium? why RpA is close to one?

Quarkonia suppression in  
a deconfined medium

heavy quarks provide a naturally hard 
enough scale to study the production 

mechanisms in perturbative QCD 
(factorisation breaking, CS vs CO etc)

★   probe for QCD in heavy quark production ★   probe for large-distance evolution and formation

✓  Charmonia are very special!

★   Charm quark mass scale is at the boundary between pQCD and soft QCD
★   Specific for production and destruction mechanisms in HIC

★ Quarkonia are sensitive to all the stages, from early heavy quark production 
      to late time evolution and bound states’ formation

Quantitative understanding of VMs in pp/pA/AA at 
different energies remains a challenge
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VM exclusive photo production: an overview

transverse profile of the target gluon density that can be probed by means of the measured
di↵erential in t distributions.

The impact-parameter dependence of the gluon density in the target is an intrinsically
non-perturbative property and is often parameterised in terms of a Gaussian distribution
like it is done, for example, in the case of the so-called “bSat” model [15]. In order to get
a more accurate description of interactions between the color dipole and the target encoded
in the impact-parameter profile of the target, the corresponding amplitude can be found by
solving the Balitsky-Kovchegov (BK) evolution equation [16, 17]. It is known that the BK
equation at the next-to-leading order (NLO) is unstable due to large NLO corrections when
one integrates out the gluon emissions with small transverse momenta. So, these corrections
need to be properly resummed to all orders [18]. Besides, an additional phenomenon called
the Coulomb tails that corresponds to an unphysical growth of the amplitude at large im-
pact parameters should be taken into consideration. The latter phenomenon is found to be
connected to the creation of large daughter dipoles during the evolution, thus enabling this
problem to be cured. The BK solutions without such Coulomb tails can be found in several
recent studies, e.g. in Refs. [19, 20] this problem is absent by the use of the collinearly im-
proved kernel. In the current analysis, we apply both the “bSat” model and the BK solution
with collinearly improved kernel in the study of di↵erential quarkonia photoproduction cross
sections in UPCs for relevant experimental conditions at HERA and LHC colliders.

The paper is organised as follows. In Sect. II, we give a short description of the dif-
ferential cross section of elastic vector meson photoproduction �p ! V p o↵ the proton
target in terms of the dipole S-matrix and quarkonia LF wave functions in the framework
of potential approach. In Sect. III, we discuss the models for the impact-parameter de-
pendent partial dipole amplitude that have been used in the numerical analysis throughout
this work. Sect. IV presents the numerical results for the di↵erential cross section of the
�p ! V p process for the ground and excited quarkonia states, with J/ results successfully
describing the existing data. In Sect. V, we review the formalism to obtain the di↵erential
cross section of coherent quarkonia photoproduction o↵ nuclear targets in UPCs and show
our corresponding numerical predictions for the ground and first excited  and ⌥ states
presented in Sect. VI. At last, a brief summary of our results is given in Sect. VII.

II. ELASTIC PHOTOPRODUCTION OFF A PROTON

The advantage of studying the vector meson photoproduction is that, in order to produce
a single vector meson and nothing else in a detector, a color charge cannot be transferred to
the target, requiring that at least two gluons (in the net color-singlet state) are exchanged.
This provides an exclusive character of the process, with a particularly clean environment.
Another advantage is that only in the exclusive scattering process it is possible to measure
the total momentum transfer �T , and interpret it as the Fourier conjugate of the impact
parameter (see e.g. Ref. [21, 22]). Consequently, these processes probe not only the density
of partons, but also their spatial distribution in the transverse plane.

Considering first the proton target case, at high energies the elastic di↵ractive di↵erential
cross section for the �p ! V p scattering is found as follows [15]:

d��p!V p

dt
=

1

16⇡
|A�p(x,�T )|2 , (2.1)

where t = ��2
T ⌘ (p1 � p01)

2 is the momentum transfer squared, �T ⌘ |�| is the trans-
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verse momentum of the produced vector meson V recoiled against the target (assuming the
projectile photon momentum to be collinear i.e. carries no transverse momentum), and the
elastic production amplitude

A�p(x,�T ) =

Z
d2r

Z 1

0

dz ( ⇤
V �) Aqq̄(x, r,�) , (2.2)

is given in terms of the overlap between the transversely-polarised real photon � ! QQ̄
( �) and vector meson V ! QQ̄ LF wave functions ( � and  V , respectively). Here, the
elementary amplitude for elastic qq̄ dipole scattering Aqq̄ is related to the dipole S-matrix

Aqq̄(x, r,�) =

Z
d2b e�ib·� Aqq̄(x, r, b) = i

Z
d2b e�ib·� 2[1� S(x, r, b)] . (2.3)

and thus contains the most detailed (5-dimensional) information about the gluons density
in the target. It is directly connected to the so-called gluon Wigner distribution as was
established earlier in Ref. [23]. Even though a direct access of the elliptic gluon density
in the Wigner distribution by a measurement of the exclusive quarkonia photoproduction
is impossible, due r variable being integrated in the measured di↵erential cross section, an
access of the impact parameter profile of the target gluon density is still very relevant for
understanding the hadron or nucleus structure at very low momentum transfers.

Note, by means of the optical theorem, the imaginary part of the partial dipole amplitude
in the forward limit (�T ! 0) is related to the dipole cross section �qq̄(x, r) – a universal
ingredient whose parameterization can be extracted from a given process (typically, from
DIS) and then used for description of many other processes in ep, pp and pA collisions
[24, 25] (for a first analysis of elastic charmonia photoproduction in the dipole picture, see
e.g. Refs. [26–30]).

In the o↵-forward case, one straightforwardly rewrites the elastic amplitude in terms of
the imaginary part of the elastic qq̄ amplitude in the impact parameter representation in
the following way [15]

A�p(x,�T ) = 2i

Z
d2r

Z 1

0

dz

Z
d2b ( ⇤

V ) e
�i[b�(1�z)r]·�N(x, r, b) . (2.4)

where z is the longitudinal momentum fraction of a heavy (anti)quark in the QQ̄ dipole,
and

N(x, r, b) ⌘ ImAqq̄(x, r, b) = 2[1� ReS(x, r, b)] , (2.5)

such that the dipole cross section is defined as follows,

�qq̄(x, r) = 2

Z
d2bN(x, r, b) . (2.6)

In order to take into account the real part of the Aqq̄ amplitude, it su�ces to introduce
in Eq. (2.1) a factor that represents the ratio of the real to imaginary parts of the exclusive
photoproduction amplitude A�p as follows [31]:

A�p ) A�p

✓
1� i

⇡�

2

◆
, with � =

@ lnA�p

@ ln(1/x)
. (2.7)
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various sources and ingredients coming into the color dipole formalism. Final remarks and
conclusions are summarized in Section VI.

II. EXCLUSIVE QUARKONIA ELECTROPRODUCTION: DIPOLE PICTURE

In the framework of color dipole approach [5, 10–13], the projectile (real or virtual, with
q2 = −Q2) photon undergoes strong interactions via its Fock components containing quarks
and gluons with the target proton in the frame where the target proton is at rest. In the
dipole picture, such interactions are described by the universal dipole cross section, which
is not derivable from the first principles but, instead, is fitted to e.g. HERA data (for more
details, see below). In the case of exclusive vector meson electroproduction illustrated in
Fig. 1 (left panel), such a lowest Fock state corresponds to the QQ̄ dipole whose transverse
size r is nearly frozen in the high energy limit. Once the dipole scattering occurs, a coherent
QQ̄ state forms a vector meson by means of a projection of the QQ̄ production amplitude on
to a given LC quarkonium wave function. Let us now briefly describe the main ingredients
of the dipole formulation of this process.

γ∗ V = {QQ̄}
r

1− z

z

b

p p

(1− z)r

zr

Q̄

Q
γ∗

p

J/ψ

FIG. 1: A schematic illustration of the exclusive quarkonium electroproduction process, γ∗ p → V p,
in the dipole picture. On the left panel, the structure of the amplitude and kinematic variables in

impact parameter space are depicted while its amplitude squared for the J/ψ electroproduction is
shown on the right panel.

The forward amplitude for exclusive electroproduction of a vector meson V with mass
MV in the target rest frame is given by (see e.g. Ref. [8] and references therein)

ImAγ∗p→V p
T,L (x,Q2) =

∫

d2r

1
∫

0

dzΨ†
V (r, z)Ψγ∗

T,L
(r, z;Q2)σqq̄(x, r) , x =

M2
V +Q2

s
, (2.1)

where x is the standard Bjorken variable [19], s = Q2+W 2 is the square of the ep center-of-
mass energy (with W being the γ∗p center-of-mass energy), ΨV (r, z) is the vector meson V
wave function, Ψγ∗

T,L
(r, z;Q2) is the LC distribution (or wave) function of a transversely (T )

or longitudinally (L) polarized virtual photon for a QQ̄ fluctuation, $r is the transverse size
of the QQ̄ dipole, and z = p+Q/p

+
γ is the boost-invariant fraction of the photon momentum

p+γ = Eγ + pγ carried by a heavy quark (or anti-quark). The universal dipole cross section
σqq̄(x, r) describes the dipole scattering off the target. It is typically fitted to the precision
inclusive DIS data at HERA and then is used to describe a variety of other processes in ep
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✓
1� i
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[46] V. P. Gonçalves, D. E. Martins, and C. R. Sena, Eur. Phys. J. A 57, 82 (2021),

arXiv:2007.13625 [hep-ph].
[47] S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt,

D. Stump, and C. Yuan, Phys. Rev. D 93, 033006 (2016), arXiv:1506.07443 [hep-ph].
[48] H. Kowalski and D. Teaney, Phys. Rev. D 68, 114005 (2003), arXiv:hep-ph/0304189.
[49] E. Iancu, J. Madrigal, A. Mueller, G. Soyez, and D. Triantafyllopoulos, Phys. Lett. B 750,

643 (2015), arXiv:1507.03651 [hep-ph].
[50] S. Drell and T.-M. Yan, Phys. Rev. Lett. 24, 181 (1970).
[51] S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973).
[52] G. B. West, Phys. Rev. Lett. 24, 1206 (1970).
[53] C. Alexa et al. (H1), Eur. Phys. J. C 73, 2466 (2013), arXiv:1304.5162 [hep-ex].

18



Good-Walker picture of QCD scattering: basis for LF approach

Dispersion of  
the eigenvalues  

distribution

Projectile has a substructure!

Hadron can be excited:  
not an eigenstate of interaction!

Completeness and orthogonality

Elastic and single diffractive amplitudes

Single diffractive cross section

Important basis for the dipole picture!
4

5

TABLE I: Interplay between the probabilities of hard and soft fluctu-
ations in a highly virtual photon and the cross section of interaction
of these fluctuations.

|Cα|2 σα σtot =
hard
∑

α=so f t
|Cα|2σα σsd=

hard
∑

α=so f t
|Cα|2σ2

α

Hard ∼ 1 ∼ 1
Q2 ∼ 1

Q2 ∼ 1
Q4

Soft ∼ m2
q

Q2 ∼ 1
m2
q

∼ 1
Q2 ∼ 1

m2
qQ2

independent. One can test this picture studying the Q2 depen-
dence of the diffractive DIS [26].

Since diffraction is a source of nuclear shadowing [27], that
also should scale in x. Indeed, most of experiment have not
found any variation with Q2 of shadowing in DIS on nuclei.
Only the NMC experiment managed to find a weak scaling
violation which agrees with theoretical expectations [28].

Notice that in spite of independence of Q2, both diffraction
and shadowing are higher twist effects. This is easy to check
considering photoproduction of heavy flavors. In this case the
hard scale is imposed by the heavy quark mass, and diffraction
becomes a hard process with cross section vanishing as 1/m4

Q.
Nuclear shadowing also vanishes as 1/m2

Q.
The true leading twist diffraction and shadowing are asso-

ciated with gluon radiation considered below.

B. Diffractive Drell-Yan reaction

The dipole description of the Drell-Yan reaction in many
respects is similar to DIS. This is not a surprize, since the
two processes are related by QCD factorization. The cross
section of heavy photon (γ∗ → l̄l) radiation by a quark reads
[29, 30, 31, 32],

dσ(qp→ γ∗X)

d lnα
=

∫
d2rT |ΨT,L

γ∗q(α,rT )|2σqq̄(αrT ,x), (20)

Hereα is the fraction of the quark light-cone momentum taken
away by the dilepton; rT is the photon-quark transverse sepa-
ration; and the light-cone distribution function Ψ is similar to
one in DIS, Eq. (16), and can be found in [29, 30, 31].

Notice that the dileptons are radiated only in the fragmen-
tation region of the quark and are suppressed at mid rapidi-
ties. Indeed, due to CT the dipole cross section vanishes as
σqq̄(αrT ,x) ∝ α2 at α→ 0.

There is an important difference between DIS and DY re-
action. In the inclusive DIS cross section one integrates over
0 < α < 1, this is why this cross section is always a mixture
of soft and hard contributions (see Table 1). In the case of
DY reaction there is a new variable, x1, which is fraction of
the proton momentum carried by the dilepton. Since α > x1,
one can enhance the soft part of the DY cross section selecting
events with x1 → 1. This soft part of the DY process is subject

to unitarity corrections [33] which are more important than in
DIS [34].

Another distinction between DIS and DY is suppression of
the DY diffractive cross section. Namely, the forward cross
section of diffractive radiation qp→ l̄lqp is zero [30]. Indeed,
according to (10) the forward diffractive cross section is given
by the dispersion of the eigen amplitude distribution. How-
ever, in both eigen states |q〉 and |qγ∗〉 only quark interacts.
So the two eigen amplitudes are equal, and the dispersion is
zero.

Nevertheless, in the case of hadronic collision diffractive
DY cross section does not vanish in the forward direction. In
this case the two eigen states are |q̄q〉 and |q̄qγ∗〉 (for the sake
of simplicity we take a pion). The interacting component of
these Fock states is the q̄q dipole, however it gets a different
size after the q or q̄ radiate the photon. Then the two Fock
states interact differently, and this leads to a nonvanishing for-
ward diffraction. Notice that the diffractive cross section is
proportional to the dipole size [35].

C. Diffractive Higgs production

Diffractive higgsstrahlung is rather similar to diffractive
DY, since in both cases the radiated particle does not take
part in the interaction [35]. However, the Higgs coupling
to a quark is proportional to the quark mass, therefore, the
cross section of higgsstrahlung by light hadrons is vanishingly
small.

A larger cross section may emerge due to admixture of
heavy flavors in ligt hadrons. A novel mechanism of exclu-
sive Higgs production, pp→ Hpp, due to direct coaliscence
of heavy quarks, Q̄Q→ H was proposed in [36]. The cross
section of Higgs production was evaluated ssuming 1% of in-
trinsic charm (IC) [37] and that heavier flavors scale as 1/m2

Q
[38]. The results are shown in Fig. 7 as function of Higgs
mass for different intrinsic heavy flavors.

FIG. 7: Cross section of exclusive diffractive Higgs production,
pp→Hpp, from intrinsic charm (IC), bottom (IB) and top (IT) [36].

semi-hard/ 
semi-soft soft



Phenomenological dipole approach

Example: Naive GBW parameterization  
of HERA data

saturates at  
large separations

A point-like colorless object  
does not interact with  
external color field!

Theoretical calculation of  
the dipole CS is a challenge

see e.g. B. Kopeliovich et al, since 1981Eigenvalue of the total cross section is 
the universal dipole cross section

SD cross section

wave function of  
a given Fock state total DIS cross section

BUT! Can be extracted from data and used in ANY process!

color transparency

ANY inclusive/diffractive scattering is due to an interference of dipole scatterings!

5

Eigenstates of interaction in QCD:  
color dipoles Dipole: 

•   cannot be excited 
•   experience only elastic scattering 
•   have no definite mass, but only separation 
•   universal – elastic amplitude can be  
    extracted in one process and used in another

γ (∗)γ (∗)γ ∗

σqq σqq

  
V

p p p p

Fig. 20: The dipole representation of the amplitudes for Compton scattering (a) and for meson production (b),
corresponding to the graphs in Figs. 17a and 18.

factorization schemes have been developed, which combine features of the collinear and kt factorization
formalisms.

The two different types of factorization implement different ways of separating different parts of
the dynamics in a scattering process. The building blocks in a short-distance factorization formula corre-
spond to either small or large particle virtuality (or equivalently to small or large transverse momentum),
whereas the separation criterion in high-energy factorization is the particle rapidity. Collinear and k t

factorization are based on taking different limits: in the former case the limit of large Q2 at fixed xB and
in the latter case the limit of small xB at fixed Q2 (which must however be large enough to justify the
use of QCD perturbation theory). In the common limit of large Q2 and small xB the two schemes give
coinciding results. Instead of large Q2 one can also take a large quark mass in the limits just discussed.

A far-reaching representation of high-energy dynamics can be obtained by casting the results of kt

factorization into a particular form. The different building blocks in the graphs for Compton scattering
and meson production in Figs. 17a and 18 can be rearranged as shown in Fig. 20. The result admits a
very intuitive interpretation in a reference frame where the photon carries large momentum (this may be
the proton rest frame but also a frame where the proton moves fast, see Fig. 14): the initial photon splits
into a quark-antiquark pair, which scatters on the proton and finally forms a photon or meson again. This
is the picture we have already appealed to in Sect. 1.2.

In addition, one can perform a Fourier transformation and trade the relative transverse momentum
between quark and antiquark for their transverse distance r, which is conserved in the scattering on the
target. The quark-antiquark pair acts as a color dipole, and its scattering on the proton is described by
a “dipole cross section” σqq̄ depending on r and on xIP (or on xB in the case of inclusive DIS). The
wave functions of the photon and the meson depend on r after Fourier transformation, and at small r
the photon wave function is perturbatively calculable. Typical values of r in a scattering process are
determined by the inverse of the hard momentum scale, i.e. r ∼ (Q2 + M2

V )−1/2. An important result of
high-energy factorization is the relation

σqq̄(r, x) ∝ r2xg(x) (7)

at small r, where we have replaced the generalized gluon distribution by the usual one in the spirit of the
leading log x approximation. A more precise version of the relation (7) involves the kt dependent gluon
distribution. The dipole cross section vanishes at r = 0 in accordance with the phenomenon of “color
transparency”: a hadron becomes more and more transparent for a color dipole of decreasing size.

The scope of the dipole picture is wider than we have presented so far. It is tempting to apply it
outside the region where it can be derived in perturbation theory, by modeling the dipole cross section
and the photon wave function at large distance r. This has been very been fruitful in phenomenology, as
we will see in the next section.

The dipole picture is well suited to understand the t dependence of exclusive processes, parameter-
ized as dσ/dt ∝ exp(−b|t|) at small t. Figure 21 shows that b decreases with increasing scale Q2 +M2

V

QCD factorisation

partonic interpretation of 
a scattering does depend on 

frame of reference!
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� In case of VM, we can factorize the radial and spin-orbital
part

� In most cases, the spin-orbital part is omitted (only effect 
in normalization)
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we can solve it analytically, and we get commonly used 
Gaussian LC wave function (assuming the same spin and 
polarization structure as the photon) 
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Quarkonia wave functions: radial part
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(∝ r2
T ) for the dipole cross section is used. For the coefficient in front of r2

T we employ the

expression obtained by the first term of Taylor expansion of Eq. (9):

“r2
T ”: σq̄q(rT , s) =

σ0(s)

r2
0(s)

· r2
T . (12)

2.2 Charmonium wave functions

The spatial part of the cc̄ pair wave function satisfying the Schrödinger equation

(
−

∆

mc
+ V (r)

)
Ψnlm("r ) = Enl Ψnlm("r ) (13)

is represented in the form

Ψ("r ) = Ψnl(r) · Ylm(θ,ϕ) , (14)

where "r is 3-dimensional cc̄ separation, Ψnl(r) and Ylm(θ,ϕ) are the radial and orbital parts

of the wave function. The equation for radial Ψ(r) is solved with the help of the program

[13]. The following four potentials V (r) have been used (see Fig. 3):
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Schrodinger equation for spatial            wave function
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� The ܳ തܳ rest frame => SchrƂdinger equation

� ொܸ തொ ݎ - potentials:

� Harmonic oscillator (HO)
� Cornell potential (COR)
� Logarithmic potential (LOG)
� �ƵĐŚŵƺůůĞƌʹTye (BT)
� Power-law (POW)
For references and more details see Eur.Phys.J. C79 (2019) no.6, 495; 
arXiv:1901.02664
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Boosting and Melosh spin rotation
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Figure 3: Shapes of the potentials V (r) for the four parameterizations employed
in this paper. The curves for COR, LOG and POW are normalized at r = 1 fm
to the value of BT potential.

2.3 Light-cone wave functions for the bound states

As has been mentioned, the lowest Fock component |cc̄〉 in the infinite momentum frame

is not related by simple Lorentz boost to the wave function of charmonium in the rest

frame. This makes the problem of building the light-cone wave function for the lowest

|cc̄〉 component difficult, no unambiguous solution is yet known. There are only recipes

in the literature, a simple one widely used [19], is the following. One applies a Fourier

transformation from coordinate to momentum space to the known spatial part of the non-

relativistic wave function (14), Ψ(!r ) ⇒ Ψ(!p ), which can be written as a function of the

effective mass of the cc̄, M2 = 4(p2 + m2
c), expressed in terms of light-cone variables

M2(α, pT ) =
p2

T + m2
c

α(1 − α)
. (18)
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Figure 4: The radial part of the wave function Ψnl(r) for the 1S and 2S states
calculated with four different potentials (see text).

In order to change integration variable pL to the light-cone variable α one relates them via

M , namely pL = (α−1/2)M(pT ,α). In this way the cc̄ wave function acquires a kinematical

factor

Ψ("p ) ⇒
√

2
(p2 + m2

c)
3/4

(p2
T + m2

c)
1/2

· Ψ(α, "pT ) ≡ Φψ(α, "pT ) . (19)

This procedure is used in [20] and the result is applied to calculation of the amplitudes

(1). The result is discouraging, since the ψ′ to J/ψ ratio of the photoproduction cross sections

are far too low in comparison with data. However, the oversimplified dipole cross section

σqq̄(rT ) ∝ r2
T has been used, and what is even more essential, the important ingredient of

Lorentz transformations, the Melosh spin rotation, has been left out. The spin transforma-

tion has also been left out in the recent publication [21] which repeats the calculations of

[20] with a more realistic dipole cross section which levels off at large separations. This leads

to suppression of the node-effect (less cancelation) and enhancement of Ψ′ photoproduction.
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”Terentiev trick”
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..from the rest frame to the LC frame

Melosh spin rotation

Nevertheless, the calculated ψ′ to J/ψ ratio is smaller than the data by a factor of two.

The 2-dimensional spinors χc and χc̄ describing c and c̄ respectively in the infinite mo-

mentum frame are known to be related via the Melosh rotation [22, 19] to the spinors χ̄c

and χ̄c̄ in the rest frame:

χ
c

= R̂(α, $pT )χc ,

χ
c̄

= R̂(1 − α,−$pT )χc̄ , (20)

where the matrix R(α, $pT ) has the form:

R̂(α, $pT ) =
mc + αM − i [$σ × $n] $pT√

(mc + αM)2 + p2
T

. (21)

Since the potentials we use in section 2.2 contain no spin-orbit term, the cc̄ pair is in

S-wave. In this case spatial and spin dependences in the wave function factorize and we

arrive at the following light cone wave function of the cc̄ in the infinite momentum frame

Φ(µ,µ̄)
ψ (α, $pT ) = U (µ,µ̄)(α, $pT ) · Φψ(α, $pT ) , (22)

where

U (µ,µ̄)(α, $pT ) = χµ†
c R̂†(α, $pT )$σ · $eψ σy R̂∗(1 − α,−$pT ) σ−1

y χ̃µ̄
c̄ (23)

and χ̃c̄ is defined in (4).

Note that the wave function (22) is different from one used in [23, 24, 25] where it was

assumed that the vertex ψ → cc̄ has the structure ψµ ū γµ u like the for the photon γ∗ → cc̄.

The rest frame wave function corresponding to such a vertex contains S wave and D wave.

The weight of the latter is dictated by the structure of the vertex and cannot be justified by

any reasonable nonrelativistic potential model for the cc̄ interaction.

Now we can determine the light-cone wave function in the mixed longitudinal momentum

- transverse coordinate representation:

Φ(µ,µ̄)
ψ (α,$rT ) =

1

2 π

∫
d2$pT e−i"pT"rT Φ(µ,µ̄)

ψ (α, $pT ) . (24)
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Highlights of spin rotation: 1S and 2S charmonia cross sections
In turn, the successful use of the KST [50] and GBW [48] dipole parametrizations o↵ the
proton target motivates us to use the same approach also for nuclear targets in UPCs.

Strictly speaking, the dipole parameterisations discussed above contain only the part of
the gluon density that increases at low-x. At large x > 0.01, however, the gluon density
in the target decreases approximately as g(x) / (1 � x)N suggested by the dimensional-
cutting rules [55–57], where N ⇠ 5 ÷ 8 depending on the hard scale of the process. A
multiplication of the saturation scale squared Q2

s(x) by such a kinematical threshold factor
(1 � x)N is often referred to as the modified dipole approach that is known to provide
a significant improvement of the Drell-Yan data description at large x (while the small-
x regime is practically una↵ected) [58, 59] (see also Ref. [60]). Along these lines, in our
numerical analysis we supplement the dipole cross section with a factor (1� x)2ns�1, where
ns is the number of the active spectator quarks for the process (we adopt ns = 4 in this
work).

E. Numerical results for �p ! V p cross sections

10�1

100

101

102

103

102 103

�p !  (1S)p

mc 1.4

10�1

100

101

102

103

102 103

�p !  (1S)p

mc 1.4

�
�
p
!

V
p

W

�
�
p
!

V
p

W

10�1

100

101

102

103

102 103

�p !  (2S)p

mc 1.4

10�1

100

101

102

103

102 103

�p !  (2S)p

mc 1.4

�
�
p
!

V
p

W

�
�
p
!

V
p

W

FIG. 1. Integrated di↵ractive �p ! V p photoproduction cross section as a function of �p center-of-
mass energy, W , for V =  (1S) (left) and V =  (2S) (right) using the GBW dipole parametrisation
(2.13). The results are compared with the available experimental data from H1 [8], ZEUS [10],
ALICE [15] and LHCb [14] collaborations as well as from the fixed-target experiment at Fermilab
[61–63].

Let us now turn to a discussion of numerical results for the integrated di↵ractive �p ! V p
photoproduction cross sections (i.e. with the proton target), for V =  (nS),⌥(nS), n = 1, 2.
In Fig. 1, we present the dipole model results for  (1S) (left panel) and  (2S) (right panel)
cross sections as functions of �p center-of-mass energy, W . In this analysis, we have used
five di↵erent models for the interquark potential available from the literature and mentioned
earlier. We notice that for charmonia photoproduction both dipole parametrisations, GBW
and KST, discussed above in Sect. IID give very similar results so we have chosen the
GBW parametrisation for the presentation purposes here. Our results are compared to
the data available from H1 [8], ZEUS [10], ALICE [15] and LHCb [14] measurements as
well as from the fixed-target measurements at Fermilab [61–63]. One observes that all five
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1S and 2S electro/photo production: uncertainties

Results for J/Ɏ

M. Krelina, EPS-HEP 2019, July 11, 2019, 
Ghent, Belgium 14

� Comparison of different potentials

Results for J/Ɏ

M. Krelina, EPS-HEP 2019, July 11, 2019, 
Ghent, Belgium 15

� Comparison of different dipole cross sections
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b-dependent partial dipole amplitude: two saturation models
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Here, ↵em = 1/137 is the fine structure constant, Nc = 3 is the number of colors in QCD, ZQ

and mQ are the electric charge and the mass of the heavy quark, respectively, J0,1 (K0) are
the (modified) Bessel functions of the first (second) kind, respectively, pT is the transverse
momentum of the produced quarkonium state, and

mT =
q
m2

Q + p2T , mL = 2mQ

p
z(1� z) . (2.10)

It is worth to mention that there are still significant theoretical uncertainties in description
of the vector meson wave functions. Besides the approach discussed above, there are also
other attempts to model them. A very recent one [43] executes the calculations at the NLO
level in �p collisions for longitudinally polarized photons making use of the CGC framework
and proposing a wave function based upon NRQCD matrix elements [44]. Other study [45]
modifies the dipole cross section to enhance the suppression of dipoles with large separations
beyond the confinement length-scale (a correction important for small Q2). The analysis of
Ref. [46] is very similar to ours except that the boosted Gaussian has been utilized there to
construct the vector-meson wave functions.

III. PARTIAL DIPOLE AMPLITUDE

For the main purpose of scanning of the impact-parameter profile of the target nucleon
or nucleus, we need an impact-parameter dependent (or b-unintegrated) dipole cross section
that can be found in terms of the dipole S-matrix introduced in Eq. (2.3). First, we tested
seven di↵erent models available from the literature, and then we selected the two that best
describe the exclusive vector meson photoproduction data from the HERA collider, namely,
the impact parameter dipole saturation model [15] (dubbed as “bSat” in what follows) and
the model based upon a numerical solution of the Balitsky-Kovchegov (BK) equation [19].

In the first case of “bSat”, we employ the following formula

N(x, r, b) = 1� exp

✓
� ⇡2

2Nc
r2↵s(µ

2) xg(x, µ2)T (b)

◆
, (3.1)

where µ2 = 4/r2 + µ2
0 is the momentum scale in the collinear gluon density xg(x, µ2),

and no non-trivial information about the relative dipole orientation is implemented. In
numerical calculations, we have used the CT14LO parameterisation [47] motivated by our
earlier analysis of integrated quarkonia photoproduction cross sections performed in Ref. [33].
This will be di↵erent from the original bSat model in which the gluon PDF is evolved up
to the scale µ2 with LO DGLAP gluon evolution neglecting its coupling to quarks, but the
numerical results will be similar enough to neglect the di↵erence. Besides, we considered a
conventional Gaussian form for the proton shape function T (b)

T (b) =
1

2⇡BG
e�b2/2BG , (3.2)

where the slope parameter BG = 4.25GeV�2 is found at Ref. [48].
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BK model

In the second case, the numerical solution of the BK equation is provided by Ref. [19],
where it is obtained under the assumption that the dipole partial amplitude depends only
on the absolute values of the transverse separation of the dipole r and the impact parameter
b, but does not depend on the angle between r and b similarly to the “bSat” model. In this
case, the BK equation reads

@N (r, b, Y )

@Y
=

Z
d2r1K(r, r1, r2)

⇣
N (r1, b1, Y ) +N (r2, b2, Y )�N (r, b, Y )

�N (r1, b1, Y )N (r2, b2, Y )
⌘ (3.3)

whose numerical solution provides us with the partial dipole amplitude

N(x, r, b) = N (r, b, ln(0.008/x)) (3.4)

that has been employed in our numerical analysis below. The specific main feature of
Ref. [19] solution is that it is obtained with a collinearly improved kernel K(r, r1, r2) studied
in Ref. [49] that suppresses the larger daughter dipole sizes during the evolution and thus
does not show the nonphysical Coulomb tails.

Finally, following Refs. [50–52], we also incorporate a correction relevant at large-x mul-
tiplying the dipole cross section by a factor (1 � x)2ns�1, where ns denotes the number of
spectator quarks, which was chosen to be ns = 4.

IV. RESULTS FOR �p ! V p PROCESS

Now, that we have outlined the basic dipole formalism needed for analysis of the di↵eren-
tial photoproduction observables, let us first present the numerical results for the �p ! V p
process. Note, in general the di↵erential photoproduction cross sections computed for the
proton target are very sensitive to the dipole parametrization used in the analysis. In this
work, we analysed many di↵erent b-dependent parameterisations for the partial dipole am-
plitude, and they all give very di↵erent results. We chose to present the results obtained only
with the BK solution and the “bSat” model briefly described above as those that provide
the best description of the available J/ data. We will start with the BK solution model.
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Differential cross sections: charmonia
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FIG. 1: Di↵erential cross section for  (1S) (upper curves) and  (2S) (lower curves) pho-
toproduction as a function of |t| obtained using the numerical solution of the BK equation
obtained in Ref. [19], for W = 100 GeV (left) and W = 55 GeV (right). The results are
presented for five di↵erent interquark potential models. The  (1S) results are compared to
the corresponding data from H1 Collaboration [53, 54].

Fig. 1 shows the di↵erential cross section for J/ ⌘  (1S) (upper curves) and  (2S)
(lower curves) production as a function of the momentum transfer squared |t| for W = 100
GeV (left) and W = 55 GeV (right). Here, the results are obtained using a numerical
solution of the BK equation of the b-dependent partial dipole amplitude discussed above.
The ground-state charmonium results were compared to the experimental data available
from the H1 Collaboration [53, 54] yielding a very good description. The corresponding
observables have been evaluated with the LF quarkonia wave functions obtained for several
di↵erent parametrizations of the interquark QQ̄ potential (for more details, see Refs. [33, 42])
which lead to a rather minor variation in the final results. A bigger di↵erence is found for
the  (2S) cross section computed with the harmonic oscillator potential which is noticeably
higher than the results for other potentials. This e↵ect is due to a specific shape of this
wave function as was briefly discussed in Ref. [33]. The |t|-slope is close to a constant due
to an almost exponential impact parameter profile of the partial dipole amplitude, in full
consistency with the J/ data. One notices however a somewhat larger di↵erence in the
slopes of J/ and  (2S) di↵erential cross sections due di↵erent shapes of the wave functions.

In Fig. 2 we present our predictions for the di↵erential cross section of ⌥(1S) (left) and
⌥(2S) (right) photoproduction as a function of |t|, also using the numerical solution of the
BK equation, for W = 120 GeV. The results for the ground and excited states are separated
into two di↵erent plots since the corresponding results for the oscillator potential are very
close. This occurs due to the fact that these two wave functions in the case of harmonic
oscillator have a very similar small-r dependence. Since this domain plays a dominant role in
the integration of the ⌥ production amplitudes, one indeed arrives at very similar numerical
results for ⌥(1S) and ⌥(2S) photoproduction in this case.

Figs. 3 and 4 represent the same quantities as in Figs. 1 and 2, respectively, except that
the former are computed with the “bSat” dipole parameterisation instead of the BK solution
employed in the latter. As can be seen in Fig. 3, the use of the “bSat” dipole model and
the LF quarkonia wave functions calculated within the potential approach also provides a
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FIG. 2: Predictions for the di↵erential cross section for ⌥(1S) (left) and ⌥(2S) (right) as a
function of |t| obtained using the numerical solution of the BK equation obtained in
Ref. [19], for W = 120 GeV. The results are presented for five di↵erent interquark

potential models.
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FIG. 3: Di↵erential cross section for  (1S) (upper curves) and  (2S) (lower curves)
photoproduction as a function of |t| found with the the “bSat” dipole model for W = 100
GeV (left) and W = 55 GeV (right), including also the skewness e↵ect. The results are

presented for five di↵erent interquark potential models. The  (1S) results are compared to
the corresponding data from H1 Collaboration [53, 54].

fair description of the H1 data. The latter is not as good as in the case of the BK solution
though. However, since “bSat” dipole parameterisation is widely used in the literature,
in this work we chose to show the corresponding numerical results as well. A comparison
between the curves obtained with these two dipole models and the available H1 data for
 (1S) photoproduction is presented in Fig. 5, where we can see that both curves found are
mainly located within the experimental error bars for both W = 100 GeV (left) and W = 55
GeV (right), except that at small |t| and at large W the “bSat” model marginally overshoots
the data.

At last, we include Fig. 6 showing our results on the photoproduction cross section of
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Differential cross sections: bottomonia
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V. COHERENT PHOTOPRODUCTION OFF NUCLEAR TARGETS

In photon-nucleus scattering, the di↵erential cross section for coherent quarkonia V pho-
toproduction �A ! V A o↵ a nuclear target with atomic mass A can be found as follows:

d��A!V A

dt
=

1

16⇡
|hA�A(x,�T )iN |2 , (5.1)

in terms of the averaged amplitude [56]

hA�AiN =2i

Z
d2r

Z 1

0

dz

Z
d2be�i[b�(1�z)r]·� ⌃T hNA(x, r, b)iN , (5.2)

where ⌃T = ⌃(1)+⌃(2)@/@r, with the coe�cients found in Eq. (2.9). Following Ref. [48], the
dipole-nucleus scattering amplitude averaged over all possible configurations of the nucleons
in the target nucleus reads

hNA(x, r, b)iN = 1�
✓
1� TA(b)�qq̄(x, r)

2A

◆A

. (5.3)

This equation was obtained using a b dependent dipole amplitude parametrization, in the
same way as above. It di↵ers from other approach found in Ref. [57], where a Gaussian shape
was assumed to describe such b dependence. The functions that appear in Eq. (5.3) are the
usual (integrated) dipole cross section o↵ the proton target, �qq̄(x, r), found in Eq. (2.6),
and

TA(b) =

Z +1

�1
dz ⇢A(b, z) ,

1

A

Z
d2b TA(b) = 1 , (5.4)

i.e., the thickness function of the nucleus, given in terms of the normalised Woods-Saxon
distribution [58],

⇢A(b, z) =
N

1 + exp[ r(b,z)�c
� ]

, r(b, z) =
p
b2 + z2 . (5.5)
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Coherent photoproduction off nuclear targets
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FIG. 7: Di↵erential cross sections for the �Pb !  (nS)Pb process as functions of |t|, with
wavefunctions calculated using the Buchmüller-Tye potential. The results using the BK
and bSat dipole amplitudes and the purely phenomenological GBW dipole cross section

[73] are compared with the recent ALICE data [12] for  (1S).

FIG. 8: Predictions for the di↵erential cross sections for the �Pb ! V Pb processes as
functions of |t|, calculated with three dipole cross section models: the numerical solution of
the BK equation for the dipole amplitude, the bSat model and the GBW parameterisation.

The results for the production of  states (left) and ⌥ states (right) are shown. Both
panels present the results at y = 0 and with

p
s = 5.02TeV.

light-front wave functions, our work relies on the potential approach. Here, a radial-wave
solution of the Schrödinger equation for a given interquark potential is first obtained in the
QQ̄ rest frame and then boosted to the infinite momentum frame while the spin-dependent
part of the wave function is computed by means of the Melosh transformation. We also
incorporate the skewness e↵ect in the partial dipole amplitude at the �p level, while in the
nuclear case the dipole cross section for an elementary dipole scattering o↵ a single nucleon
has been multiplied by such a correction factor, and not the whole �A amplitude. Besides,
the gluon shadowing e↵ect in photoproduction o↵ a heavy nucleus target has been accounted
for fully phenomenologically.
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arXiv:1912.06507 [hep-ph].
[39] S. Kaur, C. Mondal, and H. Dahiya, JHEP 01, 136 (2021), arXiv:2009.04288 [hep-ph].
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very sensitive to the details of modelling of the color dipole interaction with the proton target,
and hence to the corresponding parametrization of the partial dipole amplitude [9, 40]. Such
a large sensitivity arises mostly from dominant soft and non-perturbative kinematic domains
poorly constrained by traditional fits of the dipole parametrizations to the hard DIS data
from HERA. In the current work, we choose to show numerical results obtained with the
bCGC and bsat dipole models, which in our analysis provide the best description of the
available data on ground-state ⇢, ! and � photoproduction cross sections.

Fig. 1 shows the total cross section of ⇢-meson photoproduction as a function of the �p
center-of-mass energy W . The results were obtained using the holographic wave function
with the bCGC and bsat b-dependent dipole parametrizations. In this figure, were also
included the experimental data from H1 [41, 42], ZEUS [43] and CMS [44] collaborations.
Apparently, the bsat model provides a better description of the available data in comparison
to the results obtained with the bCGC model, particularly, at smaller W values. For higher
W , however, the bsat model somewhat underestimates the data points while the bCGC
model overestimates them.

Fig. 2 also presents the total cross section as a function of W , however, in variance to
Fig. 1, it is calculated for ⇢ electroproduction with non-zeroth photon virtualities Q2. Here,
the darker curves are given for small Q2 values while the lighter ones correspond to higher
Q2. Again, the results were obtained by using the holographic wave function, as well as
with the bCGC and bsat models, and compared, on the left panel, to the H1 data [45] for
five distinct values of Q2 (from top to bottom, Q2 = 3.3, 6.6 , 11.9, 19.5 and 35.6 GeV2,
respectively) and, on the right panel, to the ZEUS data [27] for six values of Q2 (from top
to bottom, Q2 = 2.4, 3.7, 6.0, 8.3, 13.5 and 32.0 GeV2, respectively). We notice that the
bCGC model appears to be the most successful in description of the experimental data for
all available values of Q2 and in all measured W ranges.

Besides the total cross sections, we also make use of the dipole formalism to estimate
the corresponding di↵erential cross sections. In Fig. 3 we show the di↵erential cross section
for the ⇢(1S) photoproduction (Q2 = 0 GeV2) as a function of the momentum transfer
squared |t| for W = 35.6, 108 GeV (left panel), and for W = 24, 65 GeV (right panel), in
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FIG. 3. Di↵erential cross section of ⇢(1S) photoproduction as a function of the momentum transfer
squared |t| obtained with the bCGC and bsat dipole models for di↵erent values of W and compared
to the corresponding data from the CMS collaboration [44] (left panel) and to those from the H1
collaboration [42] (right panel). The darker upper curves (for W = 108 GeV) were multiplied by
a factor of ten in order to distinguish them from the lighter ones (for W = 65 GeV).

comparison to the corresponding data from CMS [44] and H1 [42] collaborations, respec-
tively. Again, here we apply the holographic wave functions and the bCGC and bsat dipole
parametrizations. In order to avoid an overlap of the curves, in each panel, we multiplied
the curves with higher W values (W = 108 GeV, W = 65 GeV), represented by darker
colors, by a factor of ten. One may notice that the bsat model provides a better overall
description of all the available data sets for higher |t| values. On the other hand, one should
note also that the largest-|t| data points from the H1 Collaboration have big uncertainties
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the total cross section is shown as a function of W for Q2 = 0 GeV2 (darker curve) and Q2 = 7
GeV2 (lighter curve) in comparison with the fixed target measurements [46–57] (a compilation of
these data can be found in Ref. [58]) and also with the data from the ZEUS Collaboration [58, 59].
On the right panel, the di↵erential cross section is shown as a function of momentum transfer
squared |t| for W = 80 GeV in comparison to the ZEUS data [58].

shown as a function of momentum transfer squared |t| for W = 80 GeV in comparison to the
data from the ZEUS Collaboration [58]. The curve comes very close to and features a similar
shape as the experimental data. This is a rather important observation given a practical
challenge in description of all t-dependent di↵erential cross sections in the framework of a
single dipole parametrization.

On the left panel of Fig. 6, the total cross section �(1S) electroproduction is presented as
a function ofW in comparison with the experimental data from the ZEUS Collaboration [60].
Here, we show the results only for the bCGC dipole parametrization, the most successful one
in description of the vector meson electroproduction data. As was the case for other vector
mesons, the curves describe the four data sets available for di↵erent Q2 values rather well
(from top to bottom, Q2 = 2.4, 3.8, 6.5 and 13.0 GeV2, respectively). On the right panel, the
di↵erential cross section is shown as a function of |t| for W = 75 GeV. Likewise, the data for
all seven available data sets for di↵erent Q2 values provided by the ZEUS Collaboration [60]
are described pretty well (from top to bottom, Q2 = 2.4, 3.6, 5.2, 6.9, 9.2, 12.6 and 19.7
GeV2, respectively). It is worth mentioning that using a vector meson mass dependent 
parameter made it possible to not only describe all the available ⇢(1S) and !(1S) data
points but also to describe well the existing measurements of �(1S). So one may conclude
here that the considered mass dependence of  in the e↵ective confining potential provides
a good description of the experimental data sets for all three light vector mesons.

Finally, the holographic wave functions approach enables us to make predictions for the
photo- and electroproduction cross sections for various vector meson excited states. Here,
we present on the left panel of Fig. 7 the predictions for the total photoproduction cross
section for ⇢(2S) (darker blue solid line), !(2S) (medium shade of blue dotted line) and
�(2S) (lighter blue dashed line) mesons as functions of W . On the right panel, we show
the corresponding predictions for the di↵erential cross sections as functions of |t| for a fixed
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FIG. 6. Results for the �(1S) electroproduction cross sections compared with the ZEUS data [60].
Here, we show the results only for the bCGC dipole parametrization. On the left panel, the total
cross section is shown as a function of W in comparisons to the four datasets with di↵erent Q2

values (from top to bottom, Q2 = 2.4, 3.8, 6.5 and 13.0 GeV2, respectively). On the right panel,
the di↵erential cross section is shown as a function of |t| for W = 75 GeV versus data points for
seven di↵erent values of Q2 (from top to bottom, Q2 = 2.4, 3.6, 5.2, 6.9, 9.2, 12.6 and 19.7 GeV2,
respectively).

W = 108 GeV. All these curves are obtained with the bCGC model – the most successful
in description of the ground-state electroproduction data (see above). Since there are large
discrepancies between the results obtained with di↵erent parametrizations for the partial
dipole amplitude, mainly for photoproduction processes, we chose to show in Fig. 8 the
predictions for the ratio of the excited-state total cross section to the corresponding ground-
state total cross section as a function of W (left panel) as well as the ration of the excited-
state di↵erential cross section to the ground-state di↵erential cross section as a function of
|t| for W = 108 GeV (right panel) for the three di↵erent light vector mesons. In order
to make the visualization of the curves clearer, we use darker solid lines for ⇢, medium
shade dotted lines for ! and lighter dashed lines for �. Also, we utilize blue shades to
represent the curves obtained with the use of the bCGC model and violet shades for the
ones obtained with the bsat model. As can be seen on both panels, the results obtained with
the bsat model are much higher than the ones obtained with the bCGC parametrization.
This result illustrates the statement that there is still big uncertainties in the structure
of partial dipole amplitude, primarily, in the soft and nonperturbative domain [13] and
that some new improved parametrizations are required in order to describe all exclusive
processes for light vector meson production. The future measurements of excited states’
photoproduction could play a significant role in further constraining the dipole model in the
nonperturbative range.

IV. CONCLUSION

In this work, the exclusive photo- and electroproduction of the light vector (⇢, !, �)
mesons are studied within the color dipole picture. By using the bCGC dipole amplitude it
was possible to obtain a very good description of the available data for the electroproduction

11

10�1

100

101

0 25 50 75 100 125 150 175

Q2 0

⇢(2S)

!(2S)

�(2S)
10�1

100

101

0 25 50 75 100 125 150 175

Q2 0

⇢(2S)

!(2S)

�(2S)

�
�
p
!

V
p
µ

W

�
�
p
!

V
p
µ

W

100

101

102

103

104

105

0 0.1 0.2 0.3 0.4 0.5

Q2 0

W = 108

100

101

102

103

104

105

0 0.1 0.2 0.3 0.4 0.5

Q2 0

W = 108

d�
�
p
!

V
p
/d

t

t

⇢(2S)
!(2S)
�(2S)

d�
�
p
!

V
p
/d

t

t

FIG. 7. Predictions for the total photoproduction cross section as a function of W (left panel) and
for the di↵erential cross section as a function of momentum transfer squared |t| for ⇢(2S) (darker
blue solid line), !(2S) (medium shade of blue dotted line) and �(2S) (lighter blue dashed line)
mesons.

FIG. 8. Predictions for the ratio of the excited-state total cross section to the ground-state total
cross section as a function of W (left panel) and for that of the excited-state di↵erential cross
section to the ground-state di↵erential cross section as a function of momentum transfer squared
|t| (right panel) for ⇢ (solid lines), ! (dotted lines) and � (dashed lines) mesons. The blue curves
are obtained with the bCGC model, while the violet ones correspond to the bsat model.

cross sections of all three light mesons in the ground state ⇢(1S), !(1S), and �(1S). For
the nonperturbative meson wave function, the light front holographic QCD model was used,
where the wave function is the solution of a relativistic equation that coincides with the
Schroedinger equation with a confining potential. It proved to be important for the descrip-
tion of the � cross section as well as its spectroscopy to have a vector meson mass-dependent
 parameter in the e↵ective confining potential.

For the photoproduction case, we calculated the di↵erential cross section, with the same
setup, and obtained a good description of the available ZEUS data for the !(1S) production
and for the CMS data for ⇢(1S) production at small t. In the case of the ⇢(1S) photopro-
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Fig. 2. Selected quantities that can be derived from the fully differential two-quark correlation function H(k, P,∆) defined
in (1). Double arrows marked by “FT” denote a Fourier transform between ∆ and b or between k and z. Fractions of plus-
momentum (commonly called “longitudinal momentum fractions”) are written as x = k+/P+ and 2ξ = −∆+/P+. The invariant
momentum transfer can be expressed in terms of longitudinal and transverse variables as ∆2 = −(4ξ2m2 +∆

2)/(1− ξ2). Only
kinematic arguments of the functions are given, while the scales introduced by ultraviolet renormalisation (µ) of by the regulation
of rapidity divergences (ζ) are suppressed. As discussed in the text, the integrals

∫
dk− and

∫
d2k cannot be taken literally but

must be supplemented with a regularisation procedure.

where “average” and “difference” refer to the right and
left hand sides of figure 1, or equivalently to the light-cone
wave function ψ and its conjugate ψ∗.

After these general considerations, we can take a closer
look at the different distributions that can be obtained
from the general two-quark correlation function in (1). A
selection of them is shown in figure 2. Let us start at the
top of the hierarchy.

1. In the forward limit ∆ = 0, parton correlation func-
tions that are not integrated over any component of k
(called “doubly” or “fully unintegrated” distributions)
have been discussed in the context of evolution at small
x [6] and with the aim of having an exact descrip-
tion of final-state kinematics [7,8]. Under the name of
“beam functions”, they have also been introduced in
soft-collinear effective theory (SCET) for the resum-
mation of large logarithms in observables sensitive to
the proton remnants (called “beam jets”) [9,10,11].
In that case, distributions differential in k− but inte-
grated over k are referred to as beam functions as well.
The considerations in [6] and [9,10,11] focus on the re-
gion of large parton virtuality k2 and compute the un-
integrated distributions in terms of conventional par-
ton distribution functions (PDFs), an aspect we will
discuss in more detail for TMDs in section 4.
A detailed analysis of factorisation with unintegrated
distributions has been given for semi-inclusive deep in-
elastic scattering (SIDIS) in [8]. For hadron-hadron

collisions there are strong arguments that this type
of factorisation generically fails, due to soft gluon ex-
change between the spectator partons in each hadron
[12,13]. In kinematics referred to as the Glauber re-
gion, these soft interactions “tie together” the two had-
rons in a way that prevents one from describing the
non-perturbative dynamics by matrix elements that
pertain to only one hadron and not to both. To estab-
lish factorisation, one has to show that (after appro-
priate approximations) gluon exchange in the Glauber
region cancels in the observable at hand.
Not being integrated over any momentum component,
parton correlation functions retain manifest Lorentz
invariance (provided that one is careful not to forget
auxiliary vectors required for their field theoretical def-
inition). They can therefore be used to classify and
relate different distributions that descend from them.
Examples are given in [14] for ∆ = 0 and in [15] for
∆ != 0.

2. Wigner distributions depend on the average momen-
tum and the average position of the quark. From the
uncertainty principle it is clear that they cannot rep-
resent joint probabilities in these two variables, but
integrating over any one of them, one obtains a prob-
ability in the other.
The most straightforward interpretation of these dis-
tributions is in the forward limit ξ = 0 of longitu-
dinal momentum. Integrating the Wigner distribution

Nucleon tomography: phase space distributions
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of which is strongly restricted by rotational invariance).
Several GPDs and TMDs describe specific spin-orbit cor-
relations at the parton level and are sensitive to parton or-
bital angular momentum, which is a crucial ingredient in
describing how the overall spin of the nucleon arises from
its constituents. In section 5 we make some comments on
this topic, which is reviewed in detail in a dedicated con-
tribution to this volume [1].

For definiteness, we will mostly consider distributions
for quarks and antiquarks in the following. Gluon distribu-
tions can be discussed in close analogy, with appropriate
adaptions.

2 Space-time and momentum structure

In this section we review the variables on which differ-
ent kinds of parton distributions depend. This will allow
us to see how the different distributions are related to
each other. Any process that probes partons inside a nu-
cleon singles out a particular direction, providing a phys-
ical distinction between “longitudinal” and “transverse”.
This is naturally implemented in the parton model, where
one chooses a reference frame in which the hadron un-
der consideration moves fast. One is however not limited
to this choice: parton distributions are defined in a co-
variant way, and one can also discuss them in the hadron
rest frame. Of course, the process probing the parton still
singles out a particular direction in that frame, so that
transverse and longitudinal directions play different roles.
Thus, the information one can gain about partons in the
proton inevitably breaks manifest three-dimensional rota-
tion invariance. For definiteness, we will in the following
consider a reference frame in which the hadron moves fast
in the positive z direction (exactly or approximately). A
suitable set of coordinates is then given by the light-cone
coordinates v± = (v0 ± v3)/

√
2 and the transverse com-

ponents v = (v1, v2) of a given four-vector v.
A two-parton correlation function for quarks is defined

as the matrix element of a bilinear quark field operator
between proton states:

H(k, P,∆) = (2π)−4

∫
d4z eizk

×
〈
p(P + 1

2∆)|q̄(− 1
2z)Γ q(12z)|p(P − 1

2∆)
〉
. (1)

The Dirac matrix Γ selects the twist1 and the parton spin
degrees of freedom, and we have omitted labels for the
proton spin state. For the moment we put aside field the-
oretical issues such as the regularisation and renormalisa-
tion of the operator and the insertion of a Wilson line be-
tween the two quark quark fields. The parton and proton
momenta are shown in figure 1. Notice that the on-shell
condition for the proton states results in the conditions
P∆ = 0 and 4P 2 + ∆2 = 4m2, where here and in the
following m denotes the proton mass.

1 There are several – slightly different – definitions of the
term “twist”. We will not expand on this topic here and refer
to [2] for a detailed discussion.

While H(k, P,∆) is a smooth function of ∆, the cases
where this momentum transfer is zero or not correspond
to distinct physical situations:

1. In the forward limit ∆ = 0 the function appears in
the cross section of inclusive processes. Glossing over
complications from confinement, one may insert a com-
plete set |X〉〈X | of states between the fields q̄ and q
in the matrix element (1). This gives essentially the
amplitude A for emitting a quark or antiquark from
the proton, with a system of spectator partons X left
behind, multiplied by the conjugate A∗ of that ampli-
tude as required for the computation of a cross sec-
tion. The representation as a squared amplitude A∗A
opens the possibility to interpret certain forward dis-
tributions as probability densities in the sense of quan-
tum mechanics. Taken literally, this interpretation no
longer holds after the regularisation and renormalisa-
tion already mentioned, but if taken with due caution
it remains a valuable guide for physical intuition.
We note that in the forward limit, it is convenient to
take a frame where P = 0, so that the proton moves
exactly along the z axis.

2. In non-forward kinematics ∆ &= 0 the function appears
in the amplitude of exclusive reactions, with an incom-
ing proton of momentum P−∆/2 and an outgoing one
of momentum P +∆/2. The functions in this case are
often called “generalised”.

In physical observables, the correlation function (1) typ-
ically is integrated over one or more components of the
four-momentum k. Let us review this step by step.

1. After an integral over k−, the quark and antiquark
fields are evaluated at z+ = 0. This admits a very
elegant interpretation in the framework of light-cone
quantisation: quark fields are quantised at light-cone
time z+ = 0, where they obey the anticommutation
relations for free fields and have a Fourier decomposi-
tion in terms of creation and annihilation operators for
quarks and antiquarks. This may be seen as the field
theory implementation of the parton model, where par-
tons are regarded as quasi-free just before they are
probed in a physical process. The parton states cre-
ated or annihilated by the fields have positive plus-
momentum, so that depending on the respective signs
of k+ −∆+/2 and k+ +∆+/2, the matrix element in
figure 1 describes the emission and reabsorption of a
quark, the emission and reabsorption of an antiquark,
or (for ∆+ &= 0 only) the emission or absorption of a
quark-antiquark pair (see figure 3 below). At z+ = 0,
the representation of the parton correlation function as

k − 1
2∆ k + 1

2∆

P − 1
2∆ P + 1

2∆

Fig. 1. Momentum assignments in the general quark correla-
tion function (1).
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What do we know about the nucleon? It is a complicated object!
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kinematic arguments of the functions are given, while the scales introduced by ultraviolet renormalisation (µ) of by the regulation
of rapidity divergences (ζ) are suppressed. As discussed in the text, the integrals

∫
dk− and

∫
d2k cannot be taken literally but

must be supplemented with a regularisation procedure.

where “average” and “difference” refer to the right and
left hand sides of figure 1, or equivalently to the light-cone
wave function ψ and its conjugate ψ∗.

After these general considerations, we can take a closer
look at the different distributions that can be obtained
from the general two-quark correlation function in (1). A
selection of them is shown in figure 2. Let us start at the
top of the hierarchy.

1. In the forward limit ∆ = 0, parton correlation func-
tions that are not integrated over any component of k
(called “doubly” or “fully unintegrated” distributions)
have been discussed in the context of evolution at small
x [6] and with the aim of having an exact descrip-
tion of final-state kinematics [7,8]. Under the name of
“beam functions”, they have also been introduced in
soft-collinear effective theory (SCET) for the resum-
mation of large logarithms in observables sensitive to
the proton remnants (called “beam jets”) [9,10,11].
In that case, distributions differential in k− but inte-
grated over k are referred to as beam functions as well.
The considerations in [6] and [9,10,11] focus on the re-
gion of large parton virtuality k2 and compute the un-
integrated distributions in terms of conventional par-
ton distribution functions (PDFs), an aspect we will
discuss in more detail for TMDs in section 4.
A detailed analysis of factorisation with unintegrated
distributions has been given for semi-inclusive deep in-
elastic scattering (SIDIS) in [8]. For hadron-hadron

collisions there are strong arguments that this type
of factorisation generically fails, due to soft gluon ex-
change between the spectator partons in each hadron
[12,13]. In kinematics referred to as the Glauber re-
gion, these soft interactions “tie together” the two had-
rons in a way that prevents one from describing the
non-perturbative dynamics by matrix elements that
pertain to only one hadron and not to both. To estab-
lish factorisation, one has to show that (after appro-
priate approximations) gluon exchange in the Glauber
region cancels in the observable at hand.
Not being integrated over any momentum component,
parton correlation functions retain manifest Lorentz
invariance (provided that one is careful not to forget
auxiliary vectors required for their field theoretical def-
inition). They can therefore be used to classify and
relate different distributions that descend from them.
Examples are given in [14] for ∆ = 0 and in [15] for
∆ != 0.

2. Wigner distributions depend on the average momen-
tum and the average position of the quark. From the
uncertainty principle it is clear that they cannot rep-
resent joint probabilities in these two variables, but
integrating over any one of them, one obtains a prob-
ability in the other.
The most straightforward interpretation of these dis-
tributions is in the forward limit ξ = 0 of longitu-
dinal momentum. Integrating the Wigner distribution

3D tomography:
Generalized parton distributions (GPD)

Fourier transform 

Deeply Virtual Compton Scattering (DVCS) 

distribution of partons in impact parameter space

Partons also experience a transverse  
motion at a given impact parameter!



Nucleon 5D tomography: the “mother distribution”

✓     5D tomography: Generalised TMD (GTMD) 

                                    Husimi distribution 

                                    Wigner distribution Belitsky, Ji, Yuan (2004); Ji (2003); 
Lorce, Pasquini (2011); Y. Hatta (2011)…

Y. Hagiwara, Y. Hatta (2015)…

Meissner, Metz, Schlegel (2009)…

5D tomography:
Wigner distributionͶ ƚŚĞ�͞ŵŽƚŚĞƌ�ĚŝƐƚƌŝďƵƚŝŽŶ͟

PDF
Form factor

charge

Belitsky, Ji, Yuan (2003);
Lorce, Pasquini (2011) 

TMD GPD

5D tomography:
Wigner distributionͶ ƚŚĞ�͞ŵŽƚŚĞƌ�ĚŝƐƚƌŝďƵƚŝŽŶ͟

PDF
Form factor

charge

Belitsky, Ji, Yuan (2003);
Lorce, Pasquini (2011) 

TMD GPD

Non-trivial correlation between  
the transverse momentum 

and the impact parameter due to  
orbital angular momentum!

Example: leading-twist quark Wigner distribution

Wigner/GTMD distributions provide the most complete information on partonic “image” of the nucleon!

YITP-17-56
LU TP 17-25

Accessing the gluon Wigner distribution in ultraperipheral pA collisions

Yoshikazu Hagiwara,1 Yoshitaka Hatta,2 Roman Pasechnik,3 Marek Tasevsky,4 and Oleg Teryaev5

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan⇤

2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan†

3Department of Astronomy and Theoretical Physics,
Lund University, SE-223 62 Lund, Sweden‡

4Institute of Physics, Academy of Sciences of the Czech Republic, 18221 Prague 8, Czech Republic§
5Joint Institute for Nuclear Research, 141980 Dubna, Russia¶

We propose to constrain the gluon Wigner distribution in the nucleon by studying the exclusive
di↵ractive dijet production process in ultraperipheral proton-nucleus collisions (UPCs) at RHIC and
the LHC. Compared to the previous proposal in Ref. [Y. Hatta, B. W. Xiao, and F. Yuan, Phys.
Rev. Lett. 116, 202301 (2016).] to study the same observable in lepton-nucleon scattering, the
use of UPCs has a few advantages: not only is the cross section larger, but the extraction of the
Wigner distribution from the data also becomes simpler, including its elliptic angular dependence.
We compute the corresponding cross section and evaluate the coe�cients using models which include
the gluon saturation e↵ects. A potential for the measurements of the Wigner distribution at current
and future experimental facilities is also discussed.
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The so-called Wigner distribution is known to provide maximally detailed information on quantum
systems describing the distribution of particles in phase space. In the case of hadron structure, the QCD
Wigner distribution [1–3], or its Fourier transform, the Generalized Transverse Momentum Dependent
Distribution (GTMD) [4–7], provides multidimensional partonic imaging of the nucleon (for a detailed
review on this topic, see e.g. Refs. [8, 9]). It gives the most comprehensive description of hadron structure
(parton tomography) and, as it is not calculable in perturbative QCD, the question of its measurement
naturally arises.

The measurement of various nonperturbative ingredients of QCD factorization (“partonometry”) is in
general a challenging problem. While spin-averaged and spin-dependent parton distributions can be stud-
ied in (inclusive) Deep Inelastic Scattering (DIS), the studies of the Transverse Momentum Dependent
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The so-called Wigner distribution is known to provide maximally detailed information on quantum

systems describing the distribution of particles in phase space. In the case of hadron structure, the QCD
Wigner distribution [1–3], or its Fourier transform, the Generalized Transverse Momentum Dependent
Distribution (GTMD) [4–7], provides multidimensional partonic imaging of the nucleon (for a detailed
review on this topic, see e.g. Refs. [8, 9]). It gives the most comprehensive description of hadron structure
(parton tomography) and, as it is not calculable in perturbative QCD, the question of its measurement
naturally arises.

The measurement of various nonperturbative ingredients of QCD factorization (“partonometry”) is in
general a challenging problem. While spin-averaged and spin-dependent parton distributions can be stud-
ied in (inclusive) Deep Inelastic Scattering (DIS), the studies of the Transverse Momentum Dependent
Distributions (TMDs) rely mostly on semi-inclusive DIS (SIDIS), and the Generalized Parton Distri-
butions (GPDs) are extracted from the data on exclusive processes, mostly Deeply Virtual Compton
Scattering (DVCS). However, these processes are sensitive to either the transverse momentum ~q? or im-

pact parameter ~b? of partons, whereas the Wigner distribution W (x, ~q?,~b?) depends on both1. Is there
a way to phenomenologically access such detailed information on parton tomography in the nucleon?

Recently, new observables to measure gluon GTMDs in the small-x region in exclusive di↵ractive dijet
production at an electron-ion collider (EIC) have been proposed in Ref. [10] (see also a related work
[11])2. In particular, it was understood that the gluon GTMD distribution at small-x can be considered
as a Fourier transform of an impact parameter dependent forward dipole amplitude (or dipole S-matrix),
which provides access to the gluon saturation e↵ects at small-x (see e.g. Ref. [13]). Moreover, the process

is also sensitive to the characteristic azimuthal angular correlation between ~q? and ~b? governed by the
“elliptic” gluon Wigner distribution [10, 14, 15]. The actual measurement of the proposed observables
in lepton-nucleon scattering is challenging, as it requires reconstruction of full dijet kinematics vetoing
any other hadronic activity in order to reduce the backgrounds associated with the Pomeron and photon
breakup. In addition, it is mandatory to detect the forward proton to ensure exclusivity of the di↵ractive
process. While these experimental challenges are likely to be overcome at the planned EIC, the extraction
of the GTMD is further complicated by the fact that the cross section is not directly proportional to the
GTMD, but is given by its convolution integral which is di�cult to invert. It is thus worthwhile to look
for other processes in which the latter problem becomes simpler. The vast experimental data on hadronic
and nuclear collisions are now emerging from the LHC, and it would be very desirable to exploit them
for GTMD studies. We will show below that di↵ractive dijet production in ultraperipheral pA collisions
(UPCs) at the LHC and at the RHIC is a particularly important example that provides an essential
means for such studies.

In UPCs the relativistic colliding systems (such as nucleons and nuclei) pass each other at large trans-
verse distances without interacting hadronically, only electromagnetically through the emission of quasi-
real Weiszäcker-Williams (WW) photons [16, 17]. The e↵ective WW photon flux of a charged particle
is scaled as the square of its charge and thus is noticeably enhanced for heavy ions making UPCs in pA
more advantageous compared to those in pp. Besides, the WW spectrum is rather broad with the maxi-
mal photon energy in the target rest frame scaling linearly with the nuclear Lorentz factor. In addition,
UPCs in pA provide good experimental opportunities for studies of exclusive di↵ractive observables by
detecting the intact protons and possibly also ions using the LHC forward proton spectrometers (such as
Roman pots in TOTEM [18], CT-PPS [19] at the CMS side or ALFA [20] and AFP [21, 22] at ATLAS
side). Together with measurements of the di↵ractive dijet system, the latter would enable full kinematic
reconstruction by identifying the momentum transfers from the proton and the ion separately3. Due
to a large relative distance between the scattering particles, the measurements of UPCs in pA can be

1
Here, x denotes the longitudinal momentum fraction. Throughout this paper, we suppress the dependence on the skewness

parameter ⇠. In the small-x region which we are interested in, e↵ectively ⇠ ⇡ x.
2
More recently, a method to access the quark GTMDs for generic values of x in the exclusive double Drell-Yan process

has been proposed [12].
3
It should be, however, noted that detailed feasibility studies for the double-tagging in p+Pb runs are still to be performed.
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where |P i is the proton state and U± is the staple-shaped Wilson line which goes to light-cone infinity
z+ = ±1 and comes back. The GTMD distribution xW (x, ~q?, ~�?) is then given by the Fourier transform
~b? ! ~�?. The key observation of Ref. [10] is that the gluon GTMD distribution at small-x is proportional
to the Fourier transform of the dipole S-matrix
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in terms of the lightlike Wilson line U in the fundamental representation and the number of QCD colors
Nc = 3. Eq. (2) shows that the measurement of the GTMD distribution boils down to that of the dipole
S-matrix. In order to be sensitive to both ~q? and ~�?, it has been suggested in Ref. [10] to measure
exclusive di↵ractive dijet production in lepton-nucleon scattering in which the proton scatters elastically
with momentum transfer ~�? and the virtual photon splits into a qq̄ pair (dipole) and then hadronizes

into a dijet in the forward region with transverse momenta ~k1? and ~k2? such that ~k1? + ~k2? = �~�?.
By measuring the di↵erential cross section as a function of the relative transverse momentum of the dijet
~P? = 1

2 (
~k2? � ~k1?) at fixed ~�?, one can get information about the ~q?-dependence of the GTMD. The

problem, however, is that the scattering amplitude ~M is given by a complicated convolution integral of
the dipole S-matrix. For the transversely polarized virtual photon, the relation is

d�
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Z
d2~q?
2⇡

~P? � ~q?
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where ✏2f = z(1� z)Q2 +m2
f . (Here, z (or 1� z) is the momentum fraction of the quark (or antiquark)

and Q2 is the photon virtuality. We neglect the quark mass mf .) In order to make the extraction of S
from M easier, the authors of Ref. [10] suggested looking at the small-Q2 region where the ~q?-integral
in Eq. (4) is dominated by ~q? ⇠ ~P?. In this paper, we push this idea to the extreme and consider the
photoproduction limit of small Q2 ! 0.

In the lepton-nucleon scattering, approaching the kinematical boundary Q2 ! 0 is experimentally
feasible as HERA indeed has measured the parton density functions (PDFs) in the proton down to
Q2 = 0.05 GeV2. There is, however, a more e�cient way to prepare a flux of almost real photons. This
is pA UPCs in which the nucleus is treated only as a source of WW photons. By using a large nucleus,
the smallness of the electromagnetic coupling ↵em is compensated by the atomic number squared Z2.
Moreover, since the photons are almost on shell, they only have transverse polarizations. (When Q2 6= 0,
the contribution from the longitudinally polarized virtual photon should be added to Eq (4); see also
Refs. [31, 32].) Note in our case one should ensure exclusivity of the process such that the proton and
nucleus remain intact. This is especially important for the proton as one should detect the final proton
in order to recover the full kinematics necessary for GTMD. On the untagged nucleus side we do not
consider resolved photon processes but we rather concentrate on the so-called direct photon process.
Below we consider exclusive di↵ractive dijet production in UPCs and demonstrate that, in the ideal case
Q2 = 0, the convolution (4) can be analytically inverted.
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Wigner distribution [1–3], or its Fourier transform, the Generalized Transverse Momentum Dependent
Distribution (GTMD) [4–7], provides multidimensional partonic imaging of the nucleon (for a detailed
review on this topic, see e.g. Refs. [8, 9]). It gives the most comprehensive description of hadron structure
(parton tomography) and, as it is not calculable in perturbative QCD, the question of its measurement
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Scattering (DVCS). However, these processes are sensitive to either the transverse momentum ~q? or im-

pact parameter ~b? of partons, whereas the Wigner distribution W (x, ~q?,~b?) depends on both1. Is there
a way to phenomenologically access such detailed information on parton tomography in the nucleon?

Recently, new observables to measure gluon GTMDs in the small-x region in exclusive di↵ractive dijet
production at an electron-ion collider (EIC) have been proposed in Ref. [10] (see also a related work
[11])2. In particular, it was understood that the gluon GTMD distribution at small-x can be considered
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any other hadronic activity in order to reduce the backgrounds associated with the Pomeron and photon
breakup. In addition, it is mandatory to detect the forward proton to ensure exclusivity of the di↵ractive
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of the GTMD is further complicated by the fact that the cross section is not directly proportional to the
GTMD, but is given by its convolution integral which is di�cult to invert. It is thus worthwhile to look
for other processes in which the latter problem becomes simpler. The vast experimental data on hadronic
and nuclear collisions are now emerging from the LHC, and it would be very desirable to exploit them
for GTMD studies. We will show below that di↵ractive dijet production in ultraperipheral pA collisions
(UPCs) at the LHC and at the RHIC is a particularly important example that provides an essential
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real Weiszäcker-Williams (WW) photons [16, 17]. The e↵ective WW photon flux of a charged particle
is scaled as the square of its charge and thus is noticeably enhanced for heavy ions making UPCs in pA
more advantageous compared to those in pp. Besides, the WW spectrum is rather broad with the maxi-
mal photon energy in the target rest frame scaling linearly with the nuclear Lorentz factor. In addition,
UPCs in pA provide good experimental opportunities for studies of exclusive di↵ractive observables by
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in terms of the lightlike Wilson line U in the fundamental representation and the number of QCD colors
Nc = 3. Eq. (2) shows that the measurement of the GTMD distribution boils down to that of the dipole
S-matrix. In order to be sensitive to both ~q? and ~�?, it has been suggested in Ref. [10] to measure
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By measuring the di↵erential cross section as a function of the relative transverse momentum of the dijet
~P? = 1

2 (
~k2? � ~k1?) at fixed ~�?, one can get information about the ~q?-dependence of the GTMD. The
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and Q2 is the photon virtuality. We neglect the quark mass mf .) In order to make the extraction of S
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FIG. 4: Demonstration of importance of the ~b-~r correlation in the partial elastic dipole amplitude (3.4) by performing
calculations of di↵erential cross sections d��p!J/ p(t)/dt (top panels) and  0(2S)-to-J/ (1S) ratio of the di↵erential cross

sections RV 0(2S)/V (1S)(W, t) = {d��p!V 0(2S)p/dt}/{d��p!V (1S)p/dt} (bottom panels) at c.m. energy W = 50 GeV (left panels)
and 200 GeV (right panels). The corresponding results based on the br-GBW dipole model (solid lines) are compared with the

case when vectors ~b and ~r are parallel (dashed lines). The charmonium wave function is determined from the BT potential.

FIG. 5: The model predictions for t-dependent di↵erential cross sections of photoproduction of di↵erent quarkonium states
at c.m. energy W = 125 (left panel) and 220 GeV (right panel). Our calculations have been performed adopting the br-GBW
model for the partial dipole amplitude taking the BT (solid lines) and Pow (dashed lines) models for c-c̄ and b-b̄ interaction
potentials.

of the node e↵ect, the ratio R 0/J/ (t) rises with t at W = 50 GeV. However, at higher W ⇠> 100 GeV this rise is
changed gradually for a more flat t-behavior of R 0/J/ (t) and R⌥ 0/⌥(t) as a result of a weaker node e↵ect at larger
energies and for heavier vector mesons, respectively. So such expected scenario is confirmed by our results based on
br-GBW and br-BGBK models and is in correspondence with analysis from Ref. [41].

Figure 6 also nicely confirms that the study of t-dependent  0(2S)/J/ (1S) ratio represents a very e↵ective tool

for ruling out various ~b-dependent models for the partial elastic dipole amplitude, especially if ~b-~r correlation is not
included properly. As an example, we discuss here a popular b-BK model where the dipole amplitude is acquired
for the case ~bk~r [27]. The corresponding predictions are plotted by dot-dashed lines. One can see that the rise of
R 0/J/ (t) is stronger at larger W and is much more intensive in comparison with the flat t-behavior obtained within

B.Z.Kopeliovich, M.Krelina  
and J.Nemchik,  

Phys. Rev. D103, no.9, 094027 (2021)
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Summary

✓    The dipole picture enables to universally explore VM photo production 
       off proton and nuclear targets 

✓    Proper treatment of the radial wave function and spin effects contribute to 
       a reasonable agreement with available data on VM photo production 
       without any adjustable parameters 

✓    Predictions for differential cross sections off both nuclear and proton 
       targets are obtained for excited (charmonia and bottomonia) states 

✓    The dipole orientation effects cause azimuthal angle correlations  
       in the helicity-flip VM photoproduction, while the size of their impact 
       is model-dependent and is subject for further explorations. 


