Probing the proton structure with exclusive vector meson photoproduction

Roman Pasechnik
TPP, Lund University

Supported by ESIF and MEYS
Project "FZU researchers, technical and administrative staff mobility"

Challenges in VM production studies

\checkmark Quarkonia production in pp/pA, as well as high pT forward particle production in PA, traditionally are very important probes for QCD dynamics e.g. QCD factorisation, gluon resummations, higher order PT and non-PT effects, medium, CGC etc
\star probe for $2 C D$ in heavy quark production
heavy quarks provide a naturally hard enough scale to study the production mechanisms in perturbative QCD (factorisation breaking, CS vs CO etc)

* probe for large-distance evolution and formation

Quarkonia suppression in a deconfined medium

* 2uarkonia are sensitive to all the stages, from early heavy quark production to late time evolution and bound states'formation
\checkmark Charmonia are very special!
\star Charm quark mass scale is at the boundary between $p \mathscr{Q} C D$ and soft $2 C D$
\star Specific for production and destruction mechanisms in HIC
$\checkmark \mathrm{J} / \mathrm{psi}$ puzzle: highly uncertain production and evolution in hot environment What is the dominate QCD mechanism and role of the medium? why $R_{p A}$ is close to one?

Quantitative understanding of VMs in pp/pA/AA at different energies remains a challenge

VM exclusive photo production: an overview

$$
\frac{\mathrm{d} \sigma^{\gamma p \rightarrow V p}}{\mathrm{~d} t}=\frac{1}{16 \pi}\left|\mathcal{A}^{\gamma p}\left(x, \Delta_{T}\right)\right|^{2} \quad x=\frac{M_{V}^{2}+Q^{2}}{s}
$$

$$
\begin{aligned}
& \mathcal{A}^{\gamma p}\left(x, \Delta_{T}\right)=2 i \int \mathrm{~d}^{2} \boldsymbol{r} \int_{0}^{1} \mathrm{~d} z \int \mathrm{~d}^{2} \boldsymbol{b}\left(\Psi_{V}^{*} \Psi\right) \mathrm{e}^{-i[\boldsymbol{l}-(1-z) r] \cdot \Delta_{N}} N(x, \boldsymbol{r}, \boldsymbol{b})
\end{aligned}
$$

$$
N(x, \boldsymbol{r}, \boldsymbol{b}) \equiv \operatorname{Im} \mathcal{A}_{q \bar{q}}(x, \boldsymbol{r}, \boldsymbol{b})=2[1-\operatorname{Re} S(x, \boldsymbol{r}, \boldsymbol{b})]
$$

$$
\sigma_{q \bar{q}}(x, r)=2 \int \mathrm{~d}^{2} \boldsymbol{b} N(x, \boldsymbol{r}, \boldsymbol{b})
$$

H. Kowalski, L. Motyka, and G. Watt, Phys. Rev. D74, 074016 (2006)
J. Hufner, Yu. P. Ivanov, B. Z. Kopeliovich, and A. V. Tarasov, Phys. Rev. D62, 094022 (2000), arXiv:hep-ph/0007111 [hep-ph].
J. Nemchik, N. N. Nikolaev, and B. G. Zakharov, Phys. Lett. B341, 228 (1994)

Good-Walker picture of QCD scattering: basis for LF approach

R. J. Glauber, Phys. Rev. 100, 242 (1955).
E. Feinberg and I. Ya. Pomeranchuk, Nuovo. Cimento. Suppl. 3 (1956) 652.

Projectile has a substructure!
M. L. Good and W. D. Walker, Phys. Rev. 120 (1960) 1857.

Hadron can be excited:

 not an eigenstate of interaction!
Completeness and orthogonality

$$
\begin{gathered}
\text { semi-hard/ } \\
\text { semi-soft }
\end{gathered} \quad \text { soft }
$$

$$
\begin{aligned}
\left\langle h^{\prime} \mid h\right\rangle & =\sum_{\alpha=1}\left(C_{\alpha}^{h^{\prime}}\right)^{*} C_{\alpha}^{h}=\delta_{h h^{\prime}} \\
\langle\beta \mid \alpha\rangle & =\sum_{h^{\prime}}\left(C_{\beta}^{h^{\prime}}\right)^{*} C_{\alpha}^{h^{\prime}}=\delta_{\alpha \beta}
\end{aligned}
$$

Elastic and single diffractive amplitudes

$$
\begin{aligned}
f_{e l}^{h \rightarrow h} & =\sum_{\alpha=1}\left|C_{\alpha}^{h}\right|^{2} f_{\alpha} \\
f_{s d}^{h \rightarrow h^{\prime}} & =\sum_{\alpha=1}\left(C_{\alpha}^{h^{\prime}}\right)^{*} C_{\alpha}^{h} f_{\alpha}
\end{aligned}
$$

$$
|h\rangle=\sum_{\alpha=1} C_{\alpha}^{h}|\alpha\rangle \quad \hat{f}_{e l}|\alpha\rangle=f_{\alpha}|\alpha\rangle
$$

	$\left\|C_{\alpha}\right\|^{2}$	σ_{α}	$\sigma_{t o t}=\sum_{\alpha=s o f t}^{\text {hard }}\left\|C_{\alpha}\right\|^{2} \sigma_{\alpha}$	$\sigma_{s d}=\sum_{\alpha=s o f t}^{\text {hard }}\left\|C_{\alpha}\right\|^{2} \sigma_{\alpha}^{2}$
Hard	~ 1	$\sim \frac{1}{Q^{2}}$	$\sim \frac{1}{Q^{2}}$	$\sim \frac{1}{Q^{4}}$
Soft	$\sim \frac{m_{q}^{2}}{Q^{2}}$	$\sim \frac{1}{m_{q}^{2}}$	$\sim \frac{1}{Q^{2}}$	$\sim \frac{1}{m_{q}^{2} Q^{2}}$

Single diffractive cross section

Important basis for the dipole picture!

$$
\begin{aligned}
& \left.\sum_{h^{\prime} \neq h} \frac{d \sigma_{s d}^{h \rightarrow h^{\prime}}}{d t}\right|_{t=0}=\frac{1}{4 \pi}\left[\sum_{h^{\prime}}\left|f_{s d}^{h h^{\prime}}\right|^{2}-\left|f_{e l}^{h h}\right|^{2}\right] \\
& \underline{\text { icture! }} \\
& \\
& =\frac{1}{4 \pi}\left[\sum_{\alpha}\left|C_{\alpha}^{h}\right|^{2}\left|f_{\alpha}\right|^{2}-\left(\sum_{\alpha}\left|C_{\alpha}^{h}\right| f_{\alpha}\right)^{2}\right]=\frac{\left\langle f_{\alpha}^{2}\right\rangle-\left\langle f_{\alpha}\right\rangle^{2}}{4 \pi}
\end{aligned}
$$

Dispersion of

Phenomenological dipole approach

Eigenvalue of the total cross section is

the universal dipole cross section

Dipole:

- cannot be excited
- experience only elastic scattering
- have no definite mass, but only separation
- universal - elastic amplitude can be
extracted in one process and used in another

partonic interpretation of a scattering does depend on
 frame of reference!

Theoretical calculation of the dipole CS is a challenge

Example: Naive GBW parameterization of HERA data
color transparency
QCD factorisation
see e.g. B. Kopeliovich et al, since 198i
Eigenstates of interaction in QCD: color dipoles

$$
\begin{aligned}
& \left.\sum_{h^{\prime}} \frac{d \sigma_{s d}^{h-h^{\prime}}}{d t}\right|_{t=0}=\sum_{\alpha=1}\left|C_{\alpha}^{h}\right|^{2} \frac{\sigma_{\alpha}^{2}}{16 \pi}=\text { SD cross section } \\
& \int d^{2} r_{T}\left\langle\Psi_{\left.h\left(r_{T}\right)\right|^{2}} \frac{\sigma^{2}\left(r_{T}\right)}{16 \pi}=\frac{\left\langle\sigma^{2}\left(r_{T}\right)\right\rangle}{16 \pi}\right.
\end{aligned}
$$

wave function of a given Fock state total DIS cross section

$$
\sigma_{t o t}^{\gamma^{r} p}\left(Q^{2}, x_{B j}\right)=\int d^{2} r_{T} \int_{0}^{1} d x\left|\Psi_{r^{(}\left(r_{T}, Q^{2}\right)}\right|^{2} \sigma_{\bar{q} q},\left(r_{T}, x_{B j}\right)
$$

BUT! Can be extracted from data and used in ANY process!

$$
\sigma_{\overline{q q}}\left(r_{T}, x\right)=\sigma_{0}\left[1-e^{-\frac{1}{4} r_{T}^{2} Q_{s}^{2}(x)}\right]
$$

saturates at large separations

$$
r_{T}^{2} \gg 1 / Q_{s}^{2}
$$

$\sigma_{\overline{q q}}\left(r_{T}\right) \propto r_{T}^{2} \quad r_{T} \rightarrow 0$
$\sigma_{q \bar{q}}(r, x) \propto r^{2} x g(x)$

A point-like colorless object does not interact with external color field!

ANY inclusive/diffractive scattering is due to an interference of dipole scatterings!

VM wave functions in the Light-Front approach

1) Go to the rest frame of the quark-antiquark $Q \bar{Q}$ system
2) Solve the Schrödinger equation (SE)

The potential in SE corresponds to the potential between both quark and antiquark
3) Boost it to the light cone (LC) frame
4) Use it for example within the color dipole framework

In case of VM, we can factorize the radial and spin-orbital part
In most cases, the spin-orbital part is omitted Absorbed into normalisation!

If we use the potential of the harmonic oscillator (HO), we can solve it analytically, and we get commonly used Gaussian LC wave function (assuming the same spin and polarization structure as the photon)

HO doesn't include the Coulomb repulsion
H. G. Dosch, T. Gousset, G. Kulzinger and H. J. Pirner, Phys. Rev. D 55 (1997) 2602.
J. R. Forshaw, R. Sandapen and G. Shaw, Phys. Rev. D 69 (2004) 094013.
J. Nemchik, N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 341 (1994) 228.
J. Nemchik, N. N. Nikolaev, E. Predazzi and B. G. Zakharov, Z. Phys. C 75 (1997) 71.

Quarkonia wave functions: radial part

The $Q \bar{Q}$ rest frame
Schrodinger equation for spatial $Q \bar{Q}$ wave function

$$
\left(-\frac{\Delta}{m_{c}}+V(r)\right) \Psi_{n l m}(\vec{r})=E_{n l} \Psi_{n l m}(\vec{r}) \quad \Psi(\vec{r})=\Psi_{n l}(r) \cdot Y_{l m}(\theta, \varphi)
$$

For references and more details see Eur.Phys.J. C79 (2019) no.6, 495;
$V_{Q \bar{Q}}(r)$ - potentials:

- Harmonic oscillator (HO)
- Cornell potential (COR)
- Logarithmic potential (LOG)
- Buchmüller-Tye (BT)
- Power-law (POW)

Boosting and Melosh spin rotation

Boosting the radial part!

..from the rest frame to the LC frame

$$
\begin{gathered}
\Psi(\vec{r}) \Rightarrow \Psi(\vec{p}) \\
M^{2}=4\left(p^{2}+m_{c}^{2}\right)=\frac{p_{T}^{2}+m_{c}^{2}}{\alpha(1-\alpha)} \\
p_{L}=(\alpha-1 / 2) M\left(p_{T}, \alpha\right)
\end{gathered}
$$

H.J. Melosh found a relation between of the spin-orbital part in the $Q \bar{Q}$ rest frame and the LC frame

Melosh spin rotation

$$
\bar{\chi}_{\mathbf{c}}=\widehat{R}\left(\alpha, \vec{p}_{T}\right) \chi_{c}, \quad \bar{\chi}_{\overline{\mathbf{c}}}=\widehat{R}\left(1-\alpha,-\vec{p}_{T}\right) \chi_{\bar{c}}
$$

$$
\widehat{R}\left(\alpha, \vec{p}_{T}\right)=\frac{m_{c}+\alpha M-i[\vec{\sigma} \times \vec{n}] \vec{p}_{T}}{\sqrt{\left(m_{c}+\alpha M\right)^{2}+p_{T}^{2}}}
$$

$$
U^{(\mu, \bar{\mu})}\left(\alpha, \vec{p}_{T}\right)=\chi_{c}^{\mu \dagger} \hat{R}^{\dagger}\left(\alpha, \vec{p}_{T}\right) \vec{\sigma} \cdot \vec{e}_{\psi} \sigma_{y} \widehat{R}^{*}\left(1-\alpha,-\vec{p}_{T}\right) \sigma_{y}^{-1} \widetilde{\chi}_{\bar{c}}^{\bar{\mu}}
$$

$$
\Psi(\vec{p}) \Rightarrow \sqrt{2} \frac{\left(p^{2}+m_{c}^{2}\right)^{3 / 4}}{\left(p_{T}^{2}+m_{c}^{2}\right)^{1 / 2}} \cdot \Psi\left(\alpha, \vec{p}_{T}\right) \equiv \Phi_{\psi}\left(\alpha, \vec{p}_{T}\right)
$$

$$
\Phi_{\psi}^{(\mu, \bar{\mu})}\left(\alpha, \vec{p}_{T}\right)=U^{(\mu, \bar{\mu})}\left(\alpha, \vec{p}_{T}\right) \cdot \Phi_{\psi}\left(\alpha, \vec{p}_{T}\right)
$$

J. Hufner, Y.P. Ivanov, B.Z. Kopeliovich, A.V. Tarasov, Phys. Rev. D 62, 094022 (2000)

Exclusive electroproduction of heavy vector mesons

- We study the effects of the Melosh spin rotation in

diffractive electroproduction

As part of the project we published the VM wave functions grid at https://hep.fjfi.cvut.cz/vm.php for

- $J / \psi, \psi(2 S), \Upsilon(1 S), \Upsilon(2 S), \Upsilon(3 S)$
- 5 different potentials

We also published grids for electroproduction cross sections with and with out spin rotation for

- 5 different dipole cross sections

Highlights of spin rotation: 1 S and 2 S charmonia cross sections

- BT potential + KST/GBW dipole cross section
- Stronger effect of the spin rotation for $\psi(2 S)$

Eur.Phys.J. C79 (2019) no.2, 154; arXiv:1812.03001
Eur.Phys.J. C79 (2019) no.6, 495; arXiv:1901.02664

Buchmuller-Tye potential

Highlights of spin rotation: $1 \mathbf{S}$ and 2 S charmonia cross sections

- BT potential + KST/GBW dipole cross section

Eur.Phys.J. C79 (2019) no.2, 154; arXiv:1812.03001
Eur.Phys.J. C79 (2019) no.6, 495; arXiv:1901.02664
Buchmuller-Tye potential

GBW model
C.Henkels, E.G.de Oliveira, RP and H.Trebien, Phys. Rev. Dıo2, no.I, Oı4024 (2020)

Highlights of spin rotation: 1S,2S,3S bottomonia

Highlights of spin rotation: $\mathbf{2 S} / \mathbf{1 S}$ and $3 \mathrm{~S} / \mathbf{1 S}$ bottomonia ratio

1S and 2S electro/photo production: uncertainties

1 S and 2 S electro/photo production: uncertainties

b-dependent partial dipole amplitude: two saturation models

$$
\begin{gathered}
\underline{\text { b-Sat model }} \\
\begin{array}{rl}
& N(x, \boldsymbol{r}, \boldsymbol{b})=1-\exp \left(-\frac{\pi^{2}}{2 N_{c}} r^{2} \alpha_{s}\left(\mu^{2}\right) x g\left(x, \mu^{2}\right) T(b)\right) \\
\mu^{2}=4 / r^{2}+\mu_{0}^{2} & T(b)=\frac{1}{2 \pi B_{\mathrm{G}}} \mathrm{e}^{-b^{2} / 2 B_{\mathrm{G}}} \quad B_{\mathrm{G}}=4.25 \mathrm{GeV}^{-2} \\
\text { H. Kowalski and D. Teaney, Phys. Rev. D 68, } 114005
\end{array}(2003)
\end{gathered}
$$

$\underline{\text { BK model }} \quad N(x, \boldsymbol{r}, \boldsymbol{b})=\mathcal{N}(r, b, \ln (0.008 / x))$

$$
\begin{aligned}
\frac{\partial \mathcal{N}(r, b, Y)}{\partial Y}= & \int d^{2} \boldsymbol{r}_{1} K\left(r, r_{1}, r_{2}\right)\left(\mathcal{N}\left(r_{1}, b_{1}, Y\right)+\mathcal{N}\left(r_{2}, b_{2}, Y\right)-\mathcal{N}(r, b, Y)\right. \\
& \left.-\mathcal{N}\left(r_{1}, b_{1}, Y\right) \mathcal{N}\left(r_{2}, b_{2}, Y\right)\right)
\end{aligned}
$$

D. Bendova, J. Cepila, J. G. Contreras, and M. Matas, Phys. Rev. D100, 054015 (2019)

Differential cross sections: charmonia

C.Henkels, E.G.de Oliveira, RP and H.Trebien, Phys. Rev. Dio4, no.5, 054008 (2021)

Differential cross sections: bottomonia

BK model

$p P b \rightarrow \Upsilon(n S) p P b$

Coherent photoproduction off nuclear targets

C.Henkels, E.G.de Oliveira, RP and H.Trebien, Phys. Rev. Dıo4, no.5, 054008 (202I)

Light VM photoproduction with holographic wave functions

S. J. Brodsky, G. F. de Teramond, H. G. Dosch, and J. Erlich, Phys. Rept. 584, 1 (2015)
J. R. Forshaw and R. Sandapen, Phys. Rev. Lett. 109, 081601 (2012)

C.Henkels, E.G.de Oliveira, RP and H.Trebien, arXiv:2207.13756

Nucleon tomography: phase space distributions

What do we know about the nucleon?

It is a complicated object!

$$
\begin{aligned}
& H(k, P, \Delta)=(2 \pi)^{-4} \int d^{4} z e^{i z k} \\
& \quad \times\left\langle p\left(P+\frac{1}{2} \Delta\right)\right| \bar{q}\left(-\frac{1}{2} z\right) \Gamma q\left(\frac{1}{2} z\right)\left|p\left(P-\frac{1}{2} \Delta\right)\right\rangle
\end{aligned}
$$

parton correlation function

Figure from Ref.

Nucleon 5D tomography: the "mother distribution"

$\checkmark 5 D$ tomography: Generalised TMD (GTMD)
Husimi distribution
Wigner'1932
Wigner distribution

Meissner, Metz, Schlegel (2009)...
Y. Hagiwara, Y. Hatta (2015)...

Belitsky, Ji, Yuan (2004); Ji (2003); Lorce, Pasquini (20II); Y. Hatta (20II)...

Example: leading-twist quark Wigner distribution

+ many more studies...

$$
W\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{i \vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} \int \frac{d z^{-} d^{2} z_{\perp}}{16 \pi^{3}} e^{i x P^{+} z^{-}-i \vec{k}_{\perp} \cdot \vec{z}_{\perp}}\left\langle P-\frac{\Delta}{2}\right| \bar{q}(-z / 2) \gamma^{+} q(z / 2)\left|P+\frac{\Delta}{2}\right\rangle
$$

(c)

Spin decomposition of the nucleon: $\quad \frac{1}{2} \Delta \Sigma+\Delta G+L^{q}+L^{g} \equiv \frac{1}{2}$
$L=\int d x d^{2} b_{\perp} d^{2} k_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right)_{z} \cdot W\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right) \quad$ canonical orbital angular momentum

The gluon Wigner distribution at small x: dipole picture

From quark to gluon: $\quad \bar{\Psi}(\vec{r}-\xi / 2) \Gamma \Psi(\vec{r}+\xi / 2) \rightarrow F^{+\nu}(\vec{r}-\xi / 2) F_{\nu}^{+}(\vec{r}+\xi / 2)$

$$
\begin{aligned}
x W\left(x, \vec{q}_{\perp}, \vec{b}_{\perp}\right)= & \frac{2}{P^{+}(2 \pi)^{3}} \int d z^{+} d^{2} \vec{z}_{\perp} \int \frac{d^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}} e^{i \vec{q}_{\perp} \cdot \vec{z}_{\perp}-i x P^{-} z^{+}} \\
& \times\left\langle P+\frac{\vec{\Delta}_{\perp}}{2}\right| \operatorname{Tr}\left[U_{+} F_{a}^{+i}\left(\vec{b}_{\perp}+\frac{z}{2}\right) U_{-} F_{a}^{+i}\left(\vec{b}_{\perp}-\frac{z}{2}\right)\right]\left|P-\frac{\vec{\Delta}_{\perp}}{2}\right\rangle
\end{aligned}
$$

Staple-shaped Wilson lines: $\quad U_{ \pm} \equiv U[0, \pm \infty ; 0] U\left[\pm \infty, z^{+} ; \vec{z}_{\perp}\right]$

$$
U\left[z_{1}^{+}, z_{2}^{+} ; \vec{z}_{\perp}\right] \equiv \mathcal{P} \exp \left(i g \int_{z_{1}^{+}}^{z_{2}^{+}} d z^{+} \hat{A}^{-}\left(z^{+}, \vec{z}_{\perp}\right)\right)
$$

$x \ll 1 \quad e^{-i x P^{-} z^{+}} \approx 1$
Y. Hatta, B. W. Xiao, F. Yuan, PRL in6, 202301 (2016)

$$
x W_{g}\left(x, \mathbf{k}, \mathbf{b}_{\perp}\right)=\frac{2 N_{c}}{\alpha_{S}} \int \frac{d^{2} \mathbf{r}}{(2 \pi)^{2}} e^{i \mathbf{k} \cdot \mathbf{r}}\left(\frac{1}{4} \nabla_{\mathbf{b}_{\perp}}^{2}-\nabla_{\mathbf{r}}^{2}\right) S_{Y}\left(\mathbf{r}, \mathbf{b}_{\perp}\right) \quad Y=\ln \frac{1}{x}
$$

Dipole S-matrix: $\quad S_{Y}\left(\vec{q}_{\perp}, \vec{\Delta}_{\perp}\right)=\int \frac{d^{2} \vec{r}_{\perp} d^{2} \vec{b}_{\perp}}{(2 \pi)^{4}} e^{i \vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}+i \vec{q}_{\perp} \cdot \vec{r}_{\perp}}\left\langle\frac{1}{N_{c}} \operatorname{Tr} U\left(\vec{b}_{\perp}+\frac{\vec{r}_{\perp}}{2}\right) U^{\dagger}\left(\vec{b}_{\perp}-\frac{\vec{r}_{\perp}}{2}\right)\right\rangle_{Y}$

Nucleon tomography: relevant processes

Combination of TMD and GPD provide a deep 3D picture of the quark and gluon content of the nucleon

TMD

Drell-Yan

Review: e.g. N. Stefanis et al.
arXiv: 1612.03077

Deeply-Virtual Compton Scattering

What about accessing the 5 \mathbf{D} Wigner/GTMD distributions?

Gluon Wigner from diffractive DIS processes

Dijet observables:
Proton recoil momentum: $\quad \vec{k}_{1 \perp}+\vec{k}_{2 \perp}=-\vec{\Delta}_{\perp}$

Dijet relative momentum: $\quad \vec{P}_{\perp}=\frac{1}{2}\left(\vec{k}_{2 \perp}-\vec{k}_{1 \perp}\right)$

$$
\frac{d \sigma}{d \vec{P}_{\perp} d \vec{\Delta}_{\perp}} \propto|\vec{M}|^{2}, \quad \vec{M}\left(\vec{P}_{\perp}, \vec{\Delta}_{\perp}\right)=\int \frac{d^{2} \vec{q}_{\perp}}{2 \pi} \frac{\vec{P}_{\perp}-\vec{q}_{\perp}}{\left(\vec{P}_{\perp}-\vec{q}_{\perp}\right)^{2}+\epsilon_{f}^{2}} S_{Y}\left(\vec{q}_{\perp}, \vec{\Delta}_{\perp}\right)
$$

for small- $Q^{2} \quad \vec{q}_{\perp} \sim \vec{P}_{\perp}$ Advantage!
T. Altinoluk et al, PLB758, 373 (2016)

Y. Hatta, B. W. Ciao, F. Yuan, PRL II6, 20230I (2016)

Fourier transform of the dipole S-matrix!

Elliptic Wigner distribution and dipole orientation

Y. Hatta, B. W. Xiao, F. Yuan, PRL iI6, 20230i (2016)
Y. Hagiwara, Y. Hatta, T. Ueda, PRD 94, 094036 (2016)

$$
W(x, \boldsymbol{b}, \boldsymbol{k})=W_{0}(x, b, k)+2 \cos 2\left(\phi_{k}-\phi_{b} W_{1}(x, b, k)+\cdots\right.
$$

Geometric

BK equation with SO(3) symmetry (CGC)

Gubser (20II)
"Elliptic" gluon Wigner

E. Iancu and A. Rezaeian, PRD95, 094003 (2017)

$$
S(\boldsymbol{b}, \boldsymbol{r})=\exp \left\{-N_{2 g}(\boldsymbol{b}, \boldsymbol{r})\right\}
$$

McLerran-Venugopalan model for the dipole S-matrix

$$
N_{2 g}(b, r, \theta)=\mathcal{N}_{0}(b, r)+\mathcal{N}_{\theta}(b, r) \cos (2 \theta)
$$

 angular correlation in DVCS etc

Dipole orientation effects VM production

Summary

\checkmark The dipole picture enables to universally explore VM photo production off proton and nuclear targets
\checkmark Proper treatment of the radial wave function and spin effects contribute to a reasonable agreement with available data on VM photo production without any adjustable parameters
\checkmark Predictions for differential cross sections off both nuclear and proton targets are obtained for excited (charmonia and bottomonia) states
\checkmark The dipole orientation effects cause azimuthal angle correlations in the helicity-flip VM photoproduction, while the size of their impact is model-dependent and is subject for further explorations.

