

Differential tt cross-section measurements using boosted top quarks in the all-hadronic final state with 139/fb of ATLAS data

Division Seminar, December 1, 2022

Petr Jačka, Jiří Hejbal, Roman Lysák

Introduction

Goals

- Measurement of ttbar differential cross-sections in region with two boosted hadronic top quarks
 - 13 TeV proton-proton collisions, 139 fb⁻¹
 - 1D, 2D and 3D spectra
- Results compared to SM predictions
- EFT interpretation to study sensitivity to BSM

References

- Run II analysis: <u>arXiv:2205.02817</u>
 - Accepted to JHEP
- Results of the first round (2015+2016 data):

10.1103/PhysRevD.98.012003

• **Top-tagging** (DNN based on substructure) and **B-tagging** (VR track-jets, DL1r) used to reduce multijet and other background contributions

Detector level

Detector level is formed from events recorded by the ATLAS detector

Source	Event Yields
$t\bar{t}$ (all-hadronic)	16200 ± 1400
$t\bar{t}$ (non-all-hadronic)	625 ± 63
Single top-quarks	179 ± 21
$t\bar{t} + W/Z/H$	114 ± 11
Multijet events	2900 ± 160
All Backgrounds	3820 ± 200
Prediction	20000 ± 1600
Data (139 fb ⁻¹)	17 261

- Around 20% of background contamination
- Multijet background (dominant) determined by data-driven technique
- Other backgrounds determined using Monte Carlo samples

Particle level results

Particle level is formed from stable particles (lifetimes > 30 ps) right before they reach detector. Measured detector level spectra are corrected by unfolding procedure for comparison with SM predictions.

- Normalized spectra compared with NLO ME+PS predictions
- Reaching 2 TeV in top p_{τ} and 4 TeV in ttbar mass

Particle level: 2D results: Comparison to NLO+PS generators

- Ratio plots of p_T^{t,2} projections in bins of p_T^{t,1}
- 2D distributions provide information about correlations between variables
 - Such information can be used in MC generators tuning or to set constraints to PDF parameters
- Discrepancy in shapes is increasing with p_T^{t,1}

Comparison to fixed order SM NNLO

- Comparison made at the parton level
 - Made of top-antitop quarks before decay
- Asymmetric cuts applied on leading (> 500 GeV) and subleading top p_T (> 350 GeV)
- MATRIX program provides fixed order calculations up to NNLO with a possibility to define event selection and binning for 1D and/or 2D spectra
- Uncertainties of MATRIX predictions:
 - 7 point comparison → does not provide information correlations between bins →Quantitative comparison between spectra not possible
- Large instabilities are observed in finite order spectra when two tops four momenta are getting closer to each other

Effective field theory (EFT) interpretation

ATLAS

0.2

-0.0

-0.2

-0.4

-0.6

-0.4

vs=13 TeV, 139 fb

- The measured distributions are interpreted within EFT
- Using MadGraph5_aMC@NLO with LO EFT model (dim6top)
- **Operators selected from Warsaw Basis**
 - 2-light-quark-2-heavy-quark operators Ο
- Using NNLO fixed order prediction as the SM prediction (σ_{sm})
- 1D and 2D limits are determined on Wilson coefficients

Conclusions

- First round of analysis
 - o <u>10.1103/PhysRevD.98.012003</u>
 - First measurement of differential cross-sections in this channel
 - Measured very highly energetic spectra
- Run II analysis:
 - o <u>arXiv:2205.02817</u>
 - Better understanding of uncertainties, more sophisticated techniques, and more data improved significantly precision of measured spectra
 - Added 2D and 3D measurements
 - Added comparison with NNLO predictions provided by MATRIX
 - Limits set to BSM coefficients

THANK YOU FOR YOUR ATTENTION!

Backup Slides

Data sets and MC samples

- **DATA:** full Run2, Lumi = 139 fb^{-1} , inclusive high-p_T large-R jet triggers
- MC samples:
 - Signal nominal sample: Powheg + Pythia 8 (using sliced samples in H_{τ})
 - Signal modelling samples:
 - Powheg + Herwig 7.1.3
 - Powheg + Pythia 8 (MEC=off)
 - MG5_aMC@NLO +Pythia 8
 - Powheg + Pythia 8 (hdamp=3*mtop)

(for determination of PS+HAD uncertainties) (for determination of ME uncertainties) (for determination of ME uncertainties) (for ISR/FSR uncertainty)

• Background samples:

- major background: QCD multijet → ABCD data-driven method
- other bckg: ttbar non-allhad (Pow+Py8), tt+W/Z (MG5+Py8), ttH(Pow+Py8), single top: t-chan, Wt (Pow+Py8)
- **EFT samples:** MG5_aMC@NLO (EFT model: dim6top) + Pythia8 (reweighting to various EFT coefficients)

Object Selection

Large-R jets

- Anti-kt LCTopo trimmed jets, R=1.0
- p_τ > 200 GeV, |η| < 2.0, m > 50 GeV
- Used for top-quark reconstruction

Small-R track jets

- Variable-R track jets
- $0.02 \le R \le 0.4$
- p_τ > 10 GeV, |η| < 2.5
- Used for b-tagging

Small-R calo jets

- Anti-kt EM P-flow, R=0.4
- p_τ > 25 GeV, |η| < 2.5
- Used for control studies only

Electrons

- p_τ > 25 GeV, |η| < 2.5
- ElectronID TightLH
- ElectronIsolation Gradient
- Used to veto events

Muons

- p_T > 25 GeV, |η| < 2.5
- MuonQuality Medium
- MuonIsolation FCTight_FixedRad
- Used to veto events

Background estimate

- Major background (~15%): multijets
- Other backgrounds small (<5%): MC-based

Multijet background estimation:

- Estimated by extended data-driven ABCD method
- Apply corrections to correlations between tagging states
- 2 parameters for each of two large-R jets (4 in total):
 - top tagging: t = 1 (yes) / 0 (no)
 - b-matching: b = 1(yes) / 0 (no)
- Events classified into 16 regions according to tagging results of two leading large-R jets
 - Signal region: S (red) [# tags = 4]
 - Validation regions: K,L,M,N (blue) [# tags = 3]
 - 11 multijet background enriched regions: [# tags <=2]

• Estimation in the signal region:

$$S = \frac{J \cdot O \cdot H \cdot F \cdot D \cdot G \cdot A^3}{(B \cdot E \cdot C \cdot I)^2}$$

jet	lt1b	J (7.0%)	K (25%)	L (39%)	S	
l large-R	0t1b	B (1.2%)	D (5.0%)	H (9.0%)	N (47%)	
	1t0b	E (0.5%)	F (2.3%)	G (4.9%)	M (31%)	
	0t0b	A (0.09%)	C (0.5%)	I (1.1%)	O (9.0%)	
2nc		0t0b	1t0b	0t1b	1t1b	
8.8 8	Leading large-R jet					

In parentheses: (MC signal)/Data ratios

Signal region yields

Source	Event Yields
$t\bar{t}$ (all-hadronic)	16200 ± 1400
$t\bar{t}$ (non-all-hadronic)	625 ± 63
Single top-quarks	179 ± 21
$t\bar{t} + W/Z/H$	114 ± 11
Multijet events	2900 ± 160
All Backgrounds	3820 ± 200
Prediction	20000 ± 1600
Data (139fb^{-1})	17 261

- Signal / Background ~ 4
- Prediction / data ~ 1.16
- Uncertainties cover limited statistics in data & MC, and all detector systematics

Unfolding and phase space definitions

- Use iterative Bayesian unfolding algorithm (N_{iter} =4)
- The unfolded differential cross-section is schematically given by:

$$\frac{\mathrm{d}\sigma^{\mathrm{fid}}}{\mathrm{d}X^{i}} \equiv \frac{1}{\mathcal{L} \cdot \Delta X^{i}} \underbrace{\frac{1}{\epsilon_{\mathrm{eff}}^{i}}}_{i} \underbrace{\sum_{j} \mathcal{M}_{ij}^{-1}}_{j} \underbrace{f_{\mathrm{acc}}^{j}}_{j} \left(N_{\mathrm{reco}}^{j} - N_{\mathrm{bg}}^{j}\right)$$

Unfolding ingredients

Summary of systematic uncertainties

Detector Systematic uncertainties:

- luminosity: 1.7% using recommended GRLs for physics analyses
- pileup: internal reweighting
- Large-R jets: JES/JER/JMS/JMR based on the consolidated recommendations
- Top-tagging: scale-factors based on the consolidated recommendations
- B-tagging: scale-factors variation using customized CDI file: Improving extrapolation uncertainties

Signal modeling uncertainties:

- ISR:
- FSR:
- PDF
- PS and hadronization
- Hard scattering modeling

- \rightarrow changing independently hdamp(=3*m_{top}), μ_{R} , μ_{F} , Var3C tune parameter
- \rightarrow changing FSR scale: μ_{R} (FSR)
- \rightarrow reweighting according to PDF4LHC prescription
- \rightarrow Powheg + Herwig7 vs nominal
- ng \rightarrow MG5_aMC@NLO+Py8 vs Pow+Py8 (MEC=off)

Background modeling uncertainties:

- Uncertainties in cross-sections of all MC background samples: ttbar nonallhadronic, Wt-single top, single top t-channel, ttX(X=HWZ)
- Additional 50% uncertainty in normalization added to Wt-single top sample to cover ambiguity in Wt-single top channel definition

Inclusive cross section measurement at particle level

Measured cross section:

 $\sigma_{fid} = 330 \pm 3.0(stat) \pm 38(syst)$ fb

Source	Relative Uncertainty [%]
Top-tagging	7.8
$JES \oplus JER$	4.2
$JMS \oplus JMR$	1.1
Flavour tagging	2.9
Alternative hard-scattering model	0.9
Alternative parton-shower model	4.3
ISR/FSR + scale	4.9
PDF	0.8
Luminosity	1.7
MC sample statistics	0.4
Total systematic uncertainty	11.8
Statistical uncertainty	1.0
Total uncertainty	11.8

Unfolding results: Comparison to previous results

Old results

dd dd₁ dp_T Data PWG+Py8 MG5_aMC@NLO+Py8 ATLAS 10² vs=13 TeV, 139 fb Boosted all-hadronic tt Fiducial particle level PWG+H7.1.3 PWG+Py8 (more IFSR) 10 PWG+Py8 (less IFSR) Stat. Unc. 10 Ē 10 Prediction Data 0.8 1.2 1.4 1.6 1.8 0.6 0.8 p_T^{t,1}[TeV] Relative Uncertainty [%] ATLAS Total Uncert Stat. Uncert ---- MC & Multijet Stat. ---- Flavour Tagging 25-VS=13 TeV, 139 fb⁻¹ Signal modelling - Jets Fiducial particle level ---- Top-tagging Normalized cross-section 20 15 10 0.6 1.2 0.8 1.4 1.6 1.8 p_T^{t,1} [TeV]

New results

- Achieved significant improvement in precision of the measurement
- Level of agreement between data & predictions is similar