Precision B-physics measurements by experiment ATLAS in CERN and prospects.

Maria Smizanska on behalf of the ATLAS collaboration

Lancaster University

Praha, FZU, 18 May 2023

Maria Smizanska on behalf of the ATLAS collaboration Precision B-physics measurements by experiment ATLAS in CERN and prospects.

Outline

• Several representative high precision measurements in B-physics ATLAS are shown. Many other interesting results:

ATLAS B-phys public results

- CP violation in $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ Eur. Phys. J. C 81 (2021) 342
- Rare decays B⁰_(s) → μ⁺μ[−] JHEP 04 (2019) 098
- Study of $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ decays with $\sqrt{s} = 13$ TeV data arXiv:2203.01808, 3 Mar 2022, CERN-EP-2022-025
- HL-LHC and B-physics performance in ATLAS

LHC and experiments

CMS Experiment

Circumference of the LHC accelerator is 26 659 m with a total of 9300 magnets inside. Magnets cooled to -193.2°C (80 K) using 10 080 tonnes of liquid nitrogen. Each second 40 Milion p-p collisions

ATLAS Experiment

ALICE Experiment

LHCb Experiment

recision B-physics measurements by experiment ATLAS in CERN and prospects.

LHC collision in ATLAS 2023 first stable beams 900 MeV

4/34

Precision B-physics measurements by experiment ATLAS in CERN and prospects.

• At LHC B-physics is measured by: LHCb dedicated experiment, and General purpose experiments: ATLAS/CMS.

- LHCb strategy: cover forward (close to beam direction) bb production. Pro: high B-cross section. Contra: very narrow b-jets - can accept just 1 pp interaction per BX. Dilute beams. Took just 6fb-1.
- ATLAS/CMS B-phys strategy: cover central bb production (transverse to beam). Pro: b-jet tracks well separated, can work at full LHC luminosity. Took 160 fb-1. Contra: to benefit from high lumi must be very selective in B-triggers: collecting di-muon B-events with pT-thresholds.
- Finally ATLAS collects similar statistics of di-muon B-events as LHCb. While B-hadronic decays remain a domain of LHCb. LHCb also constructed expensive vertex detector, 2x better precision.

ATLAS data triggered and collected for B-physics analysis

- ATLAS has collected $139 \, {\rm fb^{-1}}$ of data in Run 2, and $25 \, {\rm fb^{-1}}$ in Run 1
- B-physics in ATLAS focus mostly on final states with muons, since it is an efficient way how to trigger/store B-events while staying within budget
- Typical triggers di-muons with p_T thresholds of either 4 GeV or 6 GeV (vary over run periods)
- Additional trigger selections are applied, e.g. on di-muon masses, targeting different analyses, as shown in Fig.

Inner Detector: PIX, SCT and TRT, $p_{\mathrm{T}} > 0.4\,\mathrm{GeV},\, |\eta| < 2.5$

- Run2: new IBL 25% improvement of time resolution with respect to Run1.
- Time, mass resolutions remain stable within increasing pileup in Run 2.

CP violation in $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

• Eur. Phys. J. C 81 (2021) 342, arXiv:2001.07115

Precision B-physics measurements by experiment ATLAS in CERN and prospects.

Motivation

- $B_s^0 \rightarrow J/\psi \phi$ is used to measure CP-violation phase ϕ_s potentially sensitive to New Physics (NP)
- In Standard Model (SM) the CP violation was predicted already 55 years ago. Curently ϕ_s is predicted with high precision
 - $\phi_s = -0.03696^{+0.00072}_{-0.00082}$ rad by CKMFitter group PhysRevD.91.073007
 - $\phi_s = -0.03700 \pm 0.00104$ rad according to UTfit Collaboration arXiv: hep-ph/0606167 [hep-ph].
- LHC combined 2021: $\phi_s = -0.050 \pm 0.019$ rad, consistent with SM, however SM precision still 20 times better room for New physics.
- Other quantity related to B_s^0 mixing is $\Delta \Gamma_s = \Gamma_s^L \Gamma_s^H$, Γ_s^L and Γ_s^H are the decay widths of the mass eigenstates. $\Delta \Gamma_s$ was calculated in SM arXiv:1912.07621v2 [hep-ph], 2020 and new experimental results are important to tighten uncertainties and eventually get sensitivity to NP

$B_s^0 \rightarrow J/\psi \phi$ fit to data in 5-dimensional space: mass-lifetime-3-angles

Using 2015-2017 data we performed unbinned maximum likelihood fit simultaneously for B_s^0 mass, decay time and the decay angles:

$$\begin{aligned} \ln \ \mathcal{L} &= \sum_{i=1}^{N} \{ \mathbf{w}_{i} \cdot \ln(f_{s} \cdot \mathcal{F}_{s}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|Q), \mathbf{p}_{T_{i}}) \\ &+ f_{s} \cdot f_{B_{d}^{0}} \cdot \mathcal{F}_{B_{d}^{0}}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|Q), \mathbf{p}_{T_{i}}) \\ &+ f_{s} \cdot f_{\Lambda_{b}} \cdot \mathcal{F}_{\Lambda_{b}}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|Q), \mathbf{p}_{T_{i}}) \\ &+ (1 - f_{s} \cdot (1 + f_{B_{d}^{0}} + f_{\Lambda_{b}})) \cdot \mathcal{F}_{bkg}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, \mathbf{P}(B|Q), \mathbf{p}_{T_{i}})) \} \end{aligned}$$

Physics parameters	Observables	
• CPV phase ϕ_s • Decay widths: $\Delta\Gamma_s$, Γ_s • Decay amplitudes: $ A_0(0) ^2$, $ A_{\parallel}(0) ^2$, δ_{\parallel} , δ_{\perp} • S-wave: $ A_S(0) ^2$, δ_S • Δm_s fixed to PDG	 Basic observables : m_i, t_i, Ω_i Conditional observables per-candidate: resolutions: σm_i, σt_i Bs flavour tagging probability and method: P(B Q) 	

Probability density function for $B_s^0 \rightarrow J/\psi \phi$

k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \pm 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
5	$ A_{\parallel}(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	T ==
7	$\frac{1}{2} A_{S}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_{S}(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\pm e^{-\Gamma_{s}t}(\cos(\delta_{\parallel}-\delta_{S})\cos(\Delta m_{s}t)-\sin(\delta_{\parallel}-\delta_{S})\cos\phi_{s}\sin(\Delta m_{s}t))]$	
9	$\frac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
	$(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s$	
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-\Gamma_{s}t}(\cos\delta_{S}\cos(\Delta m_{s}t)+\sin\delta_{S}\cos\phi_{s}\sin(\Delta m_{s}t))]$, , , , ,

Table 4: Table showing the ten time-dependent functions, $O^{(k)}(t)$ and the functions of the transversity angles $g^{(k)}(\theta_T, \psi_T, \phi_T)$. The amplitudes $|A_0(0)|^2$ are for the CP-even components of the $B_0^0 \rightarrow J/\psi \phi \det s_2$, $|A_1(0)|^2$ is the CP-odd amplitude; hey have corresponding strong phases δ_0 , δ_0 and δ_{\pm} . By convention δ_0 is set to be zero. The *S*-wave amplitude $|A_5(0)|^2$ gives the fraction of $B_0^0 \rightarrow J/\psi K^{K-}(f_0)$ and has a related strong phase δ_2 . The \pm and \mp terms denote two cases: the upper sign describes the decays of a meson that was initially B_0^0 meson, while the lower sign describes the decays of a meson that was initially B_0^0 meson.

Maria Smizanska on behalf of the ATLAS collaboration

$B_s^0 \rightarrow J/\psi\phi$ results 2015-2017 data: Projections of the mass-lifetime-angular fit

Precision B-physics measurements by experiment ATLAS in CERN and prospects.

ATLAS $B_s^0 \rightarrow J/\psi\phi$ Combination Run2 + 1

	Solution (a)			
Parameter	Value	Statistical	Systematic	
		uncertainty	uncertainty	
ϕ_s [rad]	-0.087	0.036	0.021	
$\Delta\Gamma_s \ [\text{ps}^{-1}]$	0.0657	0.0043	0.0037	
$\Gamma_s [\mathrm{ps}^{-1}]$	0.6703	0.0014	0.0018	
$ A_{\parallel}(0) ^2$	0.2220	0.0017	0.0021	
$ A_0(0) ^2$	0.5152	0.0012	0.0034	
$ A_{S} ^{2}$	0.0343	0.0031	0.0045	
δ_{\perp} [rad]	3.22	0.10	0.05	
δ_{\parallel} [rad]	3.36	0.05	0.09	
$\delta_{\perp} - \delta_S$ [rad]	-0.24	0.05	0.04	

- ϕ_s result consistent with results from CMS, LHCb and SM
- Competitive single measurement of ΔΓ_s, Γ_s and helicity parameters
- Still to add 60 fb⁻¹ from 2018

High precision test of SM in $B_s^0 \rightarrow J/\psi\phi$: experiments w.r.t SM

CP violation phase ϕ_s potentially sensitive to New Physics

- SM prediction $\phi_s = -0.03696^{+0.00072}_{-0.00082}$ rad CKM Fitter C cca 20 more precise than LHC combined.
- There is a room for New physics. An answer is on experimental side: Run3 LHC and HL-LHC

Case of $\Delta \Gamma_s$ and Γ_s

- A potential New Physics enhancement of ϕ_s would also decrease $\Delta\Gamma_s$, Lenz1 et al.
- LenzOct2021 C : "Precise experimental knowledge on B-lifetimes and their Ratios, will provide bounds on New Physics
- Currently tensions at level 2σ in ΔΓ_s between ATLAS -CMS and 5σ in Γ_s between ATLAS - LHCb. More data to be used to improve lifetime measurement precision and control of systematic effects.
- All experiments still to add some of Run2. Now Run3 starting. HL-LHC in preparations.

Maria Smizanska on behalf of the ATLAS collaboration

Rare decays $B^0_{(s)} ightarrow \mu^+ \mu^-$ in ATLAS

• JHEP 04 (2019) 098, arXiv:1812.03017

16/34

Precision B-physics measurements by experiment ATLAS in CERN and prospects.

ATLAS analysis rare decays $B^0_{(s)} \rightarrow \mu^+ \mu^-$ using 2015-16 data

Physics Motivation

- Aim: determination of decay probability of two very rare decays: $B_s^0 \to \mu^+\mu^-$ and $B_d^0 \to \mu^+\mu^-$
- Multiple suppressions: FCNC current, CKM and Helicity
- New physics models predict higher, also lower rate.
- SM prediction very precise 6-8% uncertainties

Precision B-physics measurements by experiment ATLAS in CERN and prospects

Likelihood contours for the simultaneous fit to B($B_S \rightarrow \mu^+ \mu^-$) and B($B_d \rightarrow \mu^+ \mu^-$), for $-2\Delta \ln(L)$ = 2.3, 6.2, 11.8

- 2015-16 yields: Ns =80 \pm 22 and Nd =-12 \pm 20 (expected from SM Ns =91 and Nd =10)
- Run2 (2015-16) + Run1 branching fractions:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.8}_{-0.7}) \times 10^{-9} \text{ and } \mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$$

 $\bullet\,$ Compatible with SM within 2.4 $\sigma\,$

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ LHC combination 2020 ATLAS-CONF-2020-049

Compatible with SM within 2.1 σ (latest LHCb result not included)

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= \left(2.69 \,{}^{+0.37}_{-0.35}\right) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 1.9 \times 10^{-10} \text{ at } 95\% \text{ CL} \end{split}$$

Study of $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ decays

- High precision measurement of branching fractions B_r and the final state polarization in decays of double HF meson B⁺_c
 - Testing predictions of various theory models, e.g. pQCD calculation C, relativistic potential models C, sum rules calculations C.
- Observed earlier by LHCb (PRD 87 (2013) 112012^C) and ATLAS (EPJC 76 (2016) 4^C) in Run 1. Now highest precision using total Run2 data.
- D_s^+ and D_s^{*+} are reconstructed from their decays: $D_s^+ \to \phi(K^+K^-)\pi^+$ and $D_s^{*+} \to D_s^+\pi^0/\gamma$ with partial reconstruction.
- Use $B_c^+ \rightarrow J/\psi \pi^+$ reference channel for \mathcal{B}_r measurement
- Fiducial range: $p_T(B_c^+) > 15 \,\text{GeV}, |\eta(B_c^+)| < 2.0$

Reference channel with signal statistics $N_{B_c^+ \rightarrow J/\psi \pi^+} = 8440^{+550}_{-470}$

- 2D fit to extract the signal parameters
 - $m(J/\psi D_s^+)$ and the J/ψ helicity angle
- Both sensitive to polarization of the final state particles J/ψ and D_s^+ in $B_c^+ \rightarrow J/\psi D_s^{*+}$ decay.

Left: fit to inv. mass $m(J/\psi D_s^+)$. Right: fit to $|\cos \theta'(\mu^+)|$, where $\theta'(\mu^+)$ is the helicity angle between μ^+ and D_s^+ momenta, in J/ψ rest frame.

$B_c^+ ightarrow J/\psi D_s^{(*)+}$ results and comparisons

$$R_{D_s^+/\pi^+} \equiv \mathcal{B}_r(B_c^+ \to J/\psi D_s^+)/\mathcal{B}_r(B_c^+ \to J/\psi \pi^+) = 2.76 \pm 0.33 (\text{stat.}) \pm 0.30 (\text{syst.}) \pm 0.16 (\text{BF})$$

$$R_{D_{s}^{*+}/\pi^{+}} \equiv \mathcal{B}_{r}(B_{c}^{+} \to J/\psi D_{s}^{*+})/\mathcal{B}_{r}(B_{c}^{+} \to J/\psi \pi^{+}) = 5.33 \pm 0.61 \text{(stat.)} \pm 0.67 \text{(syst.)} \pm 0.32 \text{(BF)}$$

$$R_{D_s^{*+}/D_s^+} \equiv \mathcal{B}_r(B_c^+ \to J/\psi D_s^+)/\mathcal{B}_r(B_c^+ \to J/\psi D_s^{*+}) =$$

 $B_c^+ \rightarrow J/\psi D_s^{*+}$ transvers polarisation fraction $\Gamma_{\pm\pm}/\Gamma_- = -0.70 \pm 0.10$ (stat.) ± 0.04 (syst.)

 New results consistent with earlier measurements

 1.93 ± 0.24 (stat.) ± 0.10 (syst.)

- $R_{D_{\mathcal{S}}^{*+}/\pi^+}$ described well by the predictions
- $R_{D_s^+/\pi^+}$ and $R_{D_s^{*+}/D_s^+}$ predictions consistently deviate from data
 - except QCD PM (PRD 61 (2000) 034012) perfectly agreeing
- F_{±±}/Γ agrees with a naive spin-counting estimate of 2/3 and larger than the dedicated predictions
- Hatched areas statistical uncertainties of this measurement and yellow bands total uncertainties.

- Increase > 10 x \int Ldt of LHC \rightarrow 3000-4000 fb^{-1}
- Peak luminosity 5 7.5 x 10³⁴ cm⁻² s⁻¹
- Average amount of pp interactions 140-200 per BX with a time space 25 ns
- These conditions require Detector Upgrades.

High Luminosity-LHC - ATLAS track density in Inner detector

Precision B-physics measurements by experiment ATLAS in CERN and prospects.

ATLAS HL-LHC prospects $B_s^0 \rightarrow J/\psi \phi$

- ATL-PHYS-PUB-2018-041
- Inner Detector upgrade: proper decay time resolution improved by 21% w.r.t. Run 2
- Three trigger scenarios for muon momenta thresholds
- φ_s precision improves (9 20) times
 w.r.t.Run1, or (4 9) times w.r.t. current
 result combining Run1 and Run2 99.7 fb⁻¹

Likelihood contours for $68.3\%,\,95.5\%,\,and\,99.7\%$ confidence levels

$B^0_{(s)} \rightarrow \mu^+ \mu^-$ HL-LHC Prospects in ATLAS, ATL-PHYS-PUB-2018-005

- 3 trigger scenarios for thresholds $p_{T}(\mu_{1}), p_{T}(\mu_{2})$
- Conservative (10-10) GeV (x15 Run1); Intermediate (6-10) GeV (x60 Run1); High-yield (6-6) GeV (x75 Run1).

Summary

- Using Run2 and Run1 data ATLAS B-physics performed high precision measurements, addressing limitations of Standard Model in flavour sector. As in other LHC experiments the results still compatible with SM - more precision needed (Run3 and HL-LHC).
- ATLAS confirms the CP violation phase ϕ_s in $B_s^0 \rightarrow J/\psi\phi$ consistent with SM. 2018 data to be included.
- In rare decays $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ combining 2015-16 and Run1, ATLAS result compatible with SM within 2.4 σ .
- $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ results consistent with LHCb, while majority of theory models deviate from data.
- ATLAS B-physics team work hard to run the most optimal triggers in data taking Run3 data ! Specialised shifters and quality monitoring of main B-physics signatures.
- HL-LHC B-physics strategy carefully preparing.

Backup Slides

ATLAS HL-LHC prospects for semi-rare decay $B_d^0 \rightarrow \mu^+ \mu^- K^{0*}$

- ATL-PHYS-PUB-2019-003
- ATLAS HL-LHC measurement precision in the P₄ and P₅ parameters is estimated using Toy-MC simulations and consequent fit to the decay angular distributions.
- 3 trigger scenarios for thresholds $p_T(\mu_1)$, $p_T(\mu_2)$
- Expected improvements are: Conservative (10-10) GeV (x5 Run1); Intermediate (6-10) GeV (x8 Run1); High-yield (6-6) GeV (x9 Run1).

$B_s^0 \rightarrow J/\psi \phi$ ATLAS results 2015-2017 data

- While for most of the physics parameters, including ϕ_s , $\Delta\Gamma_s$, Γ_s , the fit determines a single solution, for the strong-phases δ_{\parallel} and δ_{\perp} two well separated local maxima of the likelihood are found, and shown as solution (a) and (b) in table of results
- The difference in likelihoods, −2∆ ln(L), between the two solutions is equal to 0.03, favouring (a) but without ruling out (b).

Parameter	Value	Statistical	Systematic			
		uncertainty	uncertainty			
ϕ_s [rad]	-0.081	0.041	0.022			
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	0.0607	0.0047	0.0043			
$\Gamma_s [\mathrm{ps}^{-1}]$	0.6687	0.0015	0.0022			
$ A_{\ }(0) ^2$	0.2213	0.0019	0.0023			
$ A_0(0) ^2$	0.5131	0.0013	0.0038			
$ A_{S}(0) ^{2}$	0.0321	0.0033	0.0046			
$\delta_{\perp} - \delta_S$ [rad]	-0.25	0.05	0.04			
Solution (a)						
δ_{\perp} [rad]	3.12	0.11	0.06			
δ_{\parallel} [rad]	3.35	0.05	0.09			
Solution (b)						
δ_{\perp} [rad]	2.91	0.11	0.06			
δ_{\parallel} [rad]	2.94	0.05	0.09			

Precision B-physics measurements by experiment ATLAS in CERN and prospects.

$B_s^0 ightarrow J/\psi\phi$ world combination 2021

World combined 2021: $\phi_s = -0.050 \pm 0.019$ rad, consistent with SM.

Because of tensions between the measurements, the errors on Γ_s and $\Delta\Gamma_s$ have been scaled by 2.5 and 1.77, respectively (the ellipses representing the results of each experiment are shown before scaling, while the combined ellipses include the scale factors).

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$: Background composition

- Continuum Bg: μ 's produced independently from fragmentation/decay-chains of *b*, \overline{b} quarks.
 - Reduced by boosted decision tree (BDT) with 15 variables.
- Partially reconstructed decays:
 - same side cascades $b \rightarrow c\mu X \rightarrow s(d)\mu X';$
 - same vertex e.g. $B^0_{(s)} \to K^* \mu^+ \mu^-$, $B \to J/\psi \mu X$, $B_c \to J/\psi (\mu^+ \mu^-) \mu \nu$
- Peaking background $B \rightarrow h^+ h^-$ two hadrons misidentified as μ .
 - tight μ criteria:

cision B-physics measurements by experiment ATLAS in CERN and prospects.

$B^0_{(s)} \rightarrow \mu^+ \mu^-$ Extraction of the Signal yield

- Simultaneous likelihood fit to di- μ mass in 4 BDT bins, chosen to give equal sig efficiency 18%
- Signal model from MC: two Double-Gauss centred at *B_d* and *B_s* mass.
- Non-peaking backgrounds: common exponential from data in low mass sideband
- Peaking backgrounds $B
 ightarrow h^+ h^-$ Double-Gauss from MC

Results

- $\bullet~$ 2015-16 yields: Ns =80 \pm 22 and Nd =-12 \pm 20 (expected from SM Ns =91 and Nd =10)
- Run2 (2015-16) + Run1 branching fractions:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(2.8^{+0.8}_{-0.7}\right) \times 10^{-9} \text{ and } \mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$$

• Compatible with SM within 2.4 σ

Likelihood contours for the simultaneous fit to $B(B_S \rightarrow \mu^+ \mu^-)$ and $B(B_d \rightarrow \mu^+ \mu^-)$, for $-2\Delta \ln(L)= 2.3$, 6.2, 11.8

$B^0_{(s)} \rightarrow \mu^+ \mu^-$ LHC combination 2020 ATLAS-CONF-2020-049

- Combination from binned 2D profile likelihoods
- Independent systematics, except for ratio of fragmentation fractions f_d/f_s , treated individually
- Compatible with SM within 2.1 σ (latest LHCb result not included)

$$\begin{aligned} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= \left(2.69 \substack{+0.37 \\ -0.35}\right) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 1.9 \times 10^{-10} \text{ at } 95\% \text{ CL} \end{aligned}$$

Likelihood contours correspond to $-2\Delta \ln(L) = 2.3, 6.2, 11.8, 19.3, 30.2$

$B_c^+ \rightarrow J/\psi D_s^{(*)+}$ results and comparisons with light B-mesons

- Ratios on light B-mesons extracted from PDG
- Final states with $D^{(*)}$, $D_s^{(*)+}$ occurring via the colour-favoured spectator diagram reasonably agree with $B_c^+ \rightarrow J/\psi D_s^{(*)+}$
- Colour suppressed modes $B \to J/\psi X$ deviate from $B_c^+ \to J/\psi D_s^{(*)+}$