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Jets and high-pT hadrons as QCD probes
Jet shower evolution involves pQCD and npQCD scales

What can we probe with jets: 
- vaccum fragmentation ⟶ QCD
- in medium fragmentation  ⟶ QCD matter
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Event displays with jets from e+e- 
collisions as measured by OPAL

taken from lecture by G. Soyez

or ?

Definition of what a jet actually is is needed !
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Jets ≡ bunch of collimated particles  ≈ hard partons



  

Jet algorithm

● Measure of inter-particle distances & rule how to combine particle momenta
● Sequential recombination algorithms  (infrared  & collinear safety)

Final jet

particle 1

particle 2

particle 3

particle 4

particle 5

time flow of jet algorithm

Anti-kT                            p   = -1 
Cambridge-Aachen       p   = 0
kT                                     p   = 1
1) for all particles i, j  evaluate

                            R  ≈   cone radius

 
2) Find minimal  dij , diB

3) If dij is the minimum ⟶
     merge i + j  and go to 1)
4) diB is the minimum ⟶
   remove i from the list (final jet)
   and go to 1)

                           JHEP 0804 (2008) 063

Salam, EPJ C67 (2010) 637
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Jet cross section in pp @ √s = 5 TeV

ALICE, Phys. Rev. C 101 (2020) 034911 ALICE, JHEP 01 (2022) 178

pQCD provides accurate desciption of jet production in pp
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 NLO+NLL+NP:   Z.-B. Kang, F. Ringer, I. Vitev,  JHEP 2016  (2016) 125,  PLB 769 (2017) 242



  

Jet substructure

Final jet

unwiding history of jet clustering

z

1-z

● Use iterative declustering to search for a hard scale in course of splittings 
● Search for a structure in terms of subjets ( W 

- ⟶ u d ⟶ jet )
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Uncovering the QCD dead cone effect

● Following the branch with D0 coincides
with the hadest branch in 99% cases

● Select splittings with  kT > 200 MeV
● Inclusive radiator same energy

Gluon radiation is suppressed for angles 

                      θgluon  < m/Eradiator

J. Phys. G17 (1991) 1602–1604

D0⟶K∓π±
● c,b quarks from hard-scattering

radiate, hadronize and decay
● D0 from c fragmentation from:

ALICE, Nature 605 (2022) 440–446
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c ⟶ c + g



  

Experimental access to dead cone
ALICE, Nature 605 (2022) 440–446

● Suppression of 
emissions at low 
angle for a D0 jet
compared to an 
untagged jet

● Smaller effects 
for higher 
splitting energy
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θgluon  < m/Eradiator



  

Momentum ballance of pQCD splittings
Soft-Drop (SD) grooming 
● removal of soft radiation 
● isolation of hard splittings

pT,1

pT,2

Fewer symmetric splits for D0-tagged jets than untagged jets consistent with harder fragmentation   
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D0-jet

˟ did not pass SD
SD was fulfilled

˟



  

Count hard splits which fulfill SD 

˟
˟ did not pass SD

SD was fulfilled

Fewer SD emissions in the D0-tagged jets compared to inclusive jets : 
consequence of  both color factors and mass effects

Soft-Drop (SD) grooming
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Jets as a probe of QCD matter

● Processes with high-Q2 transfer occur early
● Medium created in heavy-ion collision dissipates energy of jet shower
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Bernhard, J.E. arXiv:1804.06469



  

Jet quenching observables

● Yield suppression relative to min. bias pp → energy transport out-of-cone

  

  

● Jet substructure modification
● Jet deflection → dijet acoplanarity

J.P. Blaizot and L. McLerran, PRD 34, 2739 (1986)

in-vacuum shower in-medium shower
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Suppression of hadrons and jes
arXiv:2211.04384

● Hadrons sensitive to energy loss in the hardest branch of the shower 
● Energy loss for jets is the energy radiated out of cone  
● Interpretation requires comparison with model   
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Bayesian estimate of jet transport coefficient q 
from inclusive hadron suppression 
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BDMPS, Nucl. Phys. B483 (1997) 291

Radiative energy loss:
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Momentum ballance measurement by CMS
CMS, PRC 84 (2011) 024906

Jet momentum 
   imballance

Leading jet
pT

i

pT,1 > 120 GeV/c
pT,2 > 50 GeV/c

Large contribution to the momentum balance 
in data arises from soft particles radiated
at angles > 0.8 rad to the jets.
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in jet cones out of jet cones



  

Hadron-jet acoplanarity

● Increase in acoplanarity of low-pT, large R jets
● Models suggest this is due medium response
   rather than large angle scattering

Data driven removal of uncorrelated jet yield

TTsig,  TTref  exclusive hadnon pT bins 
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Recoil jet energy redistribution

Rising trend: interplay of jet quenching effects 
on hadron and jet production
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Substructure of jets in PbPb
ALICE, PLB 128 (2022) 102001

pT,leading

pT,sub-leading

Rg

Splittings with z > 0.2
in PbPb relative to pp
have on average
1) stronger suppression of 
    wide fragmentation patterns

2) little to no modification
    of momentum splitting
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arXiv:2211.04384



  

Substructure of jets in ATLAS
ATLAS, arXiv:2301.05606
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● Reconstruct first R = 0.2 jets     (pTjet > 35 GeV/c)
● Recluster constituents of these jets to R = 1 jets
● Sort jets according to subjet angular distances
● Jets with substructure are more suppressed

SSJ = jet with a single sub-jet
Casalderrey-Solana et al.,  arXiv:1210.7765v2



  

QGP in small collision systems?

● QGP-like signatures in high-multiplicity pp and pA
● How do QGP signatures that we see in large collision systems 

evolve when decreasing system size?
● Jet quenching is necessary consequence of a hot and dense

 fireball.  Can we see evidence of it?

ALICE Nat. Phys. 13 (2017) 535–539 
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Considerations about jet quenching 
observables in small collision systems

● Yield suppression relative to min. bias pp → energy transport out-of-cone

  

 measurement of inclusive suppression RAA requires Glauber scaling →             

 - limited precision of 〈TAA〉 for centrality biased events

 - Glauber model does not account for conservation laws,  geometry information smeared by fluctuations  

 - not defined in high-multiplicity pp collisions

● Jet substructure modification
● Jet deflection → dijet acoplanarity
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Production of inclusive jets and
 inclusive b-jets in minimum bias p+Pb 

ALICE, JHEP 01 (2022) 178

● Nuclear modification factor compatible with 1  
● No sign of mass dependent effects  
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Jet RpPb by ATLAS

ALTAS, PLB 748 (2015) 392

p-Pb 0-90%

p-Pb 0-10%
p-Pb 20-30%
p-Pb 60-90%
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Corrlation of hard processes and soft 
particle production in pp by ATLAS 

Hard scattering involving large x parton in Pb  ⇒    

    The beam remnant has less longitudinal energy ⇒ 
         Reduction of ET at large η

ATLAS, PLB 756 (2016) 10
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Flow of jet fragments in p-Pb  

  1.7< ηFMD <5.1  |ηTPC | < 0.8
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ATLAS EPJ C 80 (2020) 73

Lout of plane

Lin plane

Δ E∝ q̂ L2



  

Prospects for OO run at LHC
Small system 〈Nch〉OO ≈ 2 〈Nch〉p-Pb  with AA geometry

Huss et al., PRL 126, 192301 (2021)

〈TAA〉 nuclear overlap function depends on
soft physics of tot. inel. pp Xsec. and 〈Ncoll〉⇒  MB provides better precision
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Projection of hadron RAA for min bias OO

 
Measurement is potentially sensitive to the effect

ALICE-PUBLIC-2021-004

Calculation which assumes no energy loss and which 
accounts just for nuclear PDFs

Calculations which assume energy loss models together 
with nuclear PDFs [Huss et al. arXiv 2007.13754]

ALICE projection: 
data points follow a mean energy loss model
         In the range up to 50 GeV/c:
          ▪ statistical precision < 1.5% 
          ▪ systematic precision 4–6%   
                 - √s interpolation error ≤ 3%
                 - cross section normalization 3% 
                 - other systematics  2–4% 

Luminosities used in the projection :
OO  √sNN = 6.37 TeV    LOO = 1 nb-1    

pp    √s  = 5.02 TeV     Lpp = 3 pb-1    

OO run is planned in 2025
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Search for jet quenching in p-Pb  with 
h+jet correlations in ALICE

● Event activity measured by ZDC
● Jets recoiling from high-pT trigger hadron (TT)
● Data-driven statistical approach to remove 
    recoil-jet yield uncorrelated to TT including MPI

ALICE, PLB 783 (2018) 95

TT{X,Y} means
 X< pT,trig < Y GeV/c
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● This coincidence observable is self-normalized, no requirement of TAA scaling
● No requirement to assume correlation between Event Activity and collision geometry

Hadron-jet observables and TAA
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Limit on energy transport out of R = 0.4 in p-Pb

Δ
recoil|0−20%

Medium-induced charged energy transport out of 
R = 0.4 cone is less than 0.4 GeV/c   (90% CL)
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ALICE, PLB 783 (2018) 95

Δ
recoil|50−100%



  

High multiplicity pp events

       V0A
2.8 < η < 5.1

       V0C
-3.7 < η <-1.7

            V0M = V0A + V0C⟨V0M⟩ mean value in min. bias events
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● pp minimum bias (MB)
● pp high-multiplicity (HM) :    5x larger multiplicity in V0 detector w.r.t. MB  (0.1% of all events)



  

Search for jet quenching in high multiplicity pp 
collisions using hadron-jet acoplanarity  

TT{X,Y} means
 X< pT,trig < Y GeV/c
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Distributions of hadron-jet acoplanarity

● HM acoplanarity distributions relative to MB 
- suppressed back-to-back correlation 
- broader
The effect is stronger for low pT jets

HM event activity selection:   
        5 < V0M / 〈V0M⟩
  0.1% of MB cross section

32



  

Comparison of hadron-jet acoplanarity with PYTHIA

PYTHIA 8 Monash shows similar suppression pattern⇒ The effect is not due to jet quenching

Use PYTHIA to explore the origin of the effect
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PYTHIA : recoil jet ηjet versus pT,jet

HM events:
● significant bias in distribution of high-pT recoil jets
● enhancement in forward trigger detector acceptance

`

● V0A and V0C have asymmetric coverage

V0A V0C
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TT

recoil
jet



  

Summary
● Precise measurements of QCD with jets

● Jet shower interaction with QCD matter :  wide angle radiation  &  jet core narrowing

● Jet quenching signatures in small systems can be created by event selection biases:

      - picking up fluctuations in particle wavefunction when imposing event activity bias

      - NLO processes with multi jet topology in final state

● We need to understand to v2 > 0 of jet fragments in p-Pb    

● New systems comming soon OO

● Physics summary of ALICE measurements from Run1 and Run2
                                arXiv:2211.04384v1
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