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Motivation

Quantum effects in classical backgrounds —

* Hawking radiation during gravitational collapse.
* Schwinger pair creation.

*Coupling of classical inflaton to other quantum fields.

* etc.
Expand field in modes: ¢(x) = / (;il;?, \/21ch (ck(t)fk(X) + ol (t) fi (X))

For free fields, the mode coefficients are simple harmonic oscillator variables in
a time dependent classical background.



Simple Harmonic Oscillator

(with time dependent frequency) Early Work:

H.R. Lewis, 1968
A.M. Perelmov & V.S. Popov, 1969
v H.R. Lewis & W.B. Riesenfeld, 1969
L. Parker, 1971

Define ladder operators:
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“Bogolyubov coefficients”

where,

P4 wi(t)z =0 z is complex!




Classical-Quantum
Correspondence (CQC)
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Note 1: for any w(t)!

Note 2: all quantum operators can be written in terms of the
classical variable z(t) and the initial values of the operators.



Initial Conditions

— @
( Yw(t)

Quantum ground state implies classical system must have:
e zero point energy = w/2

e angular momentum = 1/2

(In field theory, angular momentum corresponds to global charge.)



Particle Production with CQC

Particle production is usually discussed via Bogolyubov transformations.

Using CQC, we can find particle production from a classical calculation:

1 .2 mw?
Eradiation = W (’5’2 + 5) — |2ﬂL -+ 9

Bogolyubov coefficient

2]

Summary: Particle production in classical time-dependent backgrounds,
(e.9. Hawking radiation, reheating during inflation,...) can all be calculated

using a classical analysis.
Popov & Perelmov

Zeldovich & Starobinsky
This result was known from the late 60’s. Berger
We now want more... B.-L. Hu
Hu & Parker...



Backreaction with CQC

Particle production implies backreaction on the classical background.

e slow-down of inflaton dynamics,

e evaporation of black holes,
_ o Cooper & Mottola,
* screening of electric fields, Kluger et al,

Y-Z. Chen & TV, ...
e ctc..

CQC provides a classical framework to address quantum backreaction.

* Rolling background.
Three Examples: * Quantum oscillon.

e (Collapsing shell.



Example 1: Rolling Background

Z
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Tep = zat™, Zg = 0
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Analysis

CQC Analysis: i=a—\x|z|?, Z=—(wi+MIr?)z (z=complex)
—1
x(O) — O, QE(O) — O, ZR(O) = 0, ZR(O) = %, Z](O) — m, Z](O) =0

Simple numerical problem — takes few seconds with Mathematica.

0

Full Quantum Analysis: Hy(, z,t) = i (@, 2,1 (z=real)
1 1/4 2 2 1/4 5
w(t — O’ gj, Z) — < 2) 6—$ /(20'1,) X (ﬂ) G—WOZ /2
moZ, T

free parameter

Challenging and laborious numerical problem — takes several days on cluster.



Particle on linear potential

Quantum analysis
X_C, <X>, X_C(q (increasing o)
10 B /,‘
! v (t) =%/2 / l
/




Approach to CQC
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FIG. 4: Log-log plot of (x) — x.q at t = 5 showing that the
CQC becomes more exact for larger o.



Particle on linear potential: exponent
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FIG. 5: Log-linear plot of the scaling index ns =
dIn(f)/dIn(t) for f = x4 (in black) and f = (x),, =2 (in
gray). At late times the scaling index of x., approaches 2.



Quantum vs. CQC

CQC is exact if the background is classical.
The wavepacket of the rolling particle moves down the potential and spreads.

The dynamics is classical if the rolling is faster than the spreading:

h

at >
2Mo

Therefore quantum dynamics coincides with CQC for wide wavepackets at late times.



CQC for fields

Coupled fields: S = / [ (0,0)° — 1@% ]

Quantum fields in curved S:/délx —1 hy b9
space-time: 959 p POy P

General discretized version:

Sdiscrete [ ¢KMKL¢L _ _QbKNKLQbL]

K,L

We will work with discretization on a spatial lattice: x=n*a,
as this has certain advantages over a mode decomposition.

Same as N coupled quantum simple harmonic oscillators.




CQC for fields contd.

Details may be found in “Classical Quantum Correspondence for Fields”w George Zahariade.
(arXiv:1807.10282)

ok} — Z1s complex NxN matrix

i.e. N field variables correspond to 2NN? classical variables.

1 oy
S. = /dt—Tr [zfz — szz?z}

2a
(2 + Aa*®f —1 0 0 O \
—1 2 + \a’®3 —1 0 0
a’Q? = 0 —1 24 Xa?®2 —1 0

Initial conditions: Zg = —i\/gx/ Qo_l, Zy = \/g\/ Qo



CQC for fields contd.

Zij + Q5 Zrj =0

N
.1 / A X
d; — o (Pig1 —20; + @5 1) + V' (P;) + 3 ]E_l 225 =0

Initial conditions: Zp = — g\/ Qo , Zop= \/g\/ 2o



Proof of CQC

TV & Zahariade (fields paper)

Semiclassical equation for background:

0 + V(@) + A(0]¢?|0)® =
Expectation value known in terms of Z (lattice form):
|
=2 7
j=1

which gives the CQC equation for the background:

(0]¢7]0)

r=1a

(O®); + V(@ +?ZZ*Z B, =0

Alternately, can show that the iterative semiclassical approximation gives the
CQC in the limit of infinite iterations.



Example 2: Evaporation of
Quantum Oscillon

also Hertzberg (2010)

A
L= 5(0u0) = m3(1 - cos9) + 5 (0,0)° — 5 6*0?

Breather solution (exact):

]

] T S R R R R B ER R BN CRA RS e.T

op(t,x) =4 tan™* [

wn =1 — w?

Breather will evaporate due to quantum radiation, i.e. “quantum oscillon”.

Apply CQC to evaporation.
(No other technique is available to my knowledge.)



Quantum oscillon: evaporation




Quantum Oscillon via CQC

with Jan Olle, Oriol Pujolas, George Zahariade

16 A=0
: wﬁ"\m i
-

Renormalization is necessary to compare evolutions for different lattice spacings.



Example 3: Collapsing Shell

TV, Stojkovic & Krauss, 2007
Kolopanis & TV, 2013
TV & Zahariade 2018

Radiation mode(s)

Changing shell metric leads to quantum radiation and shell evaporation.

Recast as simple harmonic oscillators with time-dependent frequencies.



Shell Dynamics

lpser & Sikivie, 1984

)
Minkowski (T, r, 0, @), r < R(T)

, = 4
7 Schwarzschild (t,7,0,), > R(T)

*Scalar field changes the form of the metric but for now we restrict
attention to just the shell radius and the field excitations.

. dT B Vi
TI'=—= BEl——QG :1——RS
dt  \/B+(1— B)R% R R

T—>OaSR—>RS.




Scalar field in shell metric

TV, Stojkovic & Krauss, 2007

R(T)
Inside shell: S, = —27r/dT/ ridr (—(0r¢)* + (0r¢)?)
0

Qutside shell:

> T 1 —2GM/r
out — —2 T 2 — 2 : r 2
Sout 7T/d /R(T)T dr( T agayy OO T (009) )

Take near-horizon limit. Only keep dominant terms.

S¢ ~ 27r/dT (/02GM rdr(0r®)” — /:O r2dr (1 — 2GM/r) ((9r§b)2>

GM T



Scalar field modes in shell metric

Expand scalar field in modes. Since action is quadratic, the modes
will be given by simple harmonic oscillator variables.

Diagonalize using principal-axis transformation:

1,5 ARZ 2 ’::li
S & Z dl ok 0T x —dT

For now, treat only one mode.

1 9 liz
oo [ar (L 2 )
0 (2(] 2Tq



Toy model for shell+1 excitation

Now with the CQC!

1 /2 2 2
S = —47T0/dTR2 [\/1 — R% — QWGOR] -+ 2 /dT [’22’ — K;;’ ]
0

R/—J - 7
~

Shell dynamics. One radiation mode.
2
w?(T) = = — 00, as R — Rg.

Next we solve the classical equations with CQC initial conditions.



Evaporation of
Gravitating Collapsing Shell
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Figure 1. Radius of shell r versus time 7 when
backreaction is ignored (dashed curve) and with
backreaction taken into account (solid curve).



Shell Evaporation with CQC
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Conclusions

% Classical Quantum Correspondence (CQC): New (!) technique to
study quantum systems in classical backgrounds.

% With CQC we can address backreaction: Comparison with full
quantum backreaction in the rolling problem shows excellent
agreement.

% Quantum oscillons: Quantum evaporation using the CQC.
% Gravitational collapse: Single-mode-CQC hints that collapse slows

down with respect to instantaneous Schwarzschild radius. A full
Implementation seems within reach.



