

Mass composition of ultra-high energy cosmic rays: results from the Pierre Auger Observatory and their astrophysical implications

Alexey Yushkov

Oddělení astročásticové fyziky Fyzikální ústav AV ČR, v.v.i.

Cosmic accelerators

 $E_{\rm lab}$ up to 10^7 times larger than at the LHC, flux $\approx 1 \text{ part/km}^2/\text{year}$ at 10^{19} eV Spectral features \rightarrow composition (elemental spectra) \rightarrow sources, propagation

Galactic cosmic rays

Favored source candidate [but there are alternatives] Supernova remnants \downarrow Collisionless shock waves \downarrow Diffusive shock acceleration

Injection and propagation scenarios: similar rigidity-dependent cut-offs

Injection: maximum source energy $E_{max} \approx Z \times 3 \text{ PeV}$ protons $E_{max} \approx 3 \text{ PeV}$, iron $E_{max} \approx 80 \text{ PeV}$ B. Peters, II Nuov. Cim. 22 (1961) 800

Propagation: energy-dependent leakage from the Milky Way knee-like structure in escape time at $E \approx Z \times \text{few} \times \text{PeV}$ ratio of CR fluxes galactic/extragalactic $\approx 1/1$ at $\approx 200 \text{ PeV}$ Giacinti et al., PRD 90 (2014) 041302(R), 91 (2015) 083009

Extensive air showers (EAS)

KASCADE and KASCADE – Grande

KArlsruhe Shower Core and Array DEtector KASCADE $200 \times 200 \text{ m}^2$; KASCADE – Grande $700 \times 700 \text{ m}^2$ scintillator arrays

2D electron – muon shower size spectra \rightarrow primary spectra of 5 mass groups

KASCADE spectra in the knee region

Knee in light-element spectra at 3-5 PeV ($\Delta \gamma \approx 0.4$)

KASCADE, ApP 31 (2009) 86

KASCADE-Grande spectra in the 2nd knee region

Heavy component — knee at $\approx 80 \text{ PeV}$

Light component — hardening at $\approx 120 \text{ PeV}$

Start of transition to extragalactic component?

≈ 10 years ago: astrophysical models

'Ankle' and 'Mixed'

ankle — transition from galactic (\approx iron) to extragalactic CR (proton/mixed) galactic \approx extragalactic: @ $E_{ankle} \approx 5$ EeV ('Ankle'); @ $E \approx 0.5 - 1$ EeV ('Mixed')

'Dip'

transition around 2nd knee (from \approx iron to proton)

ankle — propagation effect due to $p + \gamma_{\text{CMB}} \rightarrow p + e^+ + e^-$

cutoff — GZK effect $p + \gamma_{\text{CMB}} \rightarrow p(n) + \pi^0(\pi^+)$

T. Wibig, A. Wolfendale, J. Phys. G 31 (2005) 255; A. Hillas, J. Phys. G 31 (2005) R95; V. Berezinsky et al., PLB 612 (2005) 147; D. Allard et al. A&A 443 (2005) L29, A&A 473 (2007) 59; R. Aloisio et al., PRD 77 (2008) 025007

 ≈ 15 years ago: data on mass composition $> 10^{17} \ {\rm eV}$

trend toward lighter composition, in agreement with astrophysical models?

 ≈ 15 years ago: data on mass composition $> 10^{17}~{\rm eV}$

Fig. 8. Fe fraction from various experiments: Fly's Eye (\triangle) , AGASA A100 (**□**), AGASA A1 (**□**) using SIBYLL1.5 ([6] and references therein) and Haverah Park [1], using QGSJET98 (O). The mass composition determined in this paper from Volcano Ranch data, using QGSJET98 (**●**), is shown, together with an estimate of the error and energy range.

"Our knowledge about the mass of primary CR at $E > 10^{17}$ eV is rudimentary" A. Watson

The Pierre Auger Collaboration

 ≈ 400 members from ≈ 90 institutions in 16 countries

The Pierre Auger Observatory FD telescopes at Los Morados

Water-Cherenkov station

The Pierre Auger Observatory FD telescopes at Los Morados

Water-Cherenkov station

The Pierre Auger Observatory FD telescopes at Los Morados

Water-Cherenkov station

γ²/Ndf= 174.7/164

1000 1200 The Pierre Auger Observatory

Fluorescence detector (FD) [longitudinal profile]

duty cycle $15\,\%$

 24 ± 3 fluorescence telescopes at 4 locations

Surface detector (SD) [lateral distribution]

duty cycle $100\,\%$

- 1660 water-Cherenkov stations at 1500 m spacing, 3000 $\rm km^2$
- 61 water-Cherenkov stations at 750 m spacing, 23.5 $\rm km^2$

Mendoza province, Argentina

Longitudinal shower development

 $\begin{array}{l} FD \\ \approx \mbox{ calorimetric energy measurement} \\ weak \mbox{ dependence on hadronic models} \end{array}$

 $\begin{array}{l} \text{Mass composition sensitivity} \\ \langle X^p_{\max} \rangle \approx \langle X^{\text{Fe}}_{\max} \rangle + (80 - 100) \ \text{g cm}^{-2} \\ \sigma(X^p_{\max}) / \sigma(X^{\text{Fe}}_{\max}) \approx 3 \end{array}$

Measurements of the depth of shower maximum X_{max}

11 years of data 12.2004 - 12.2015 event 201022604238 energies $E > 10^{17.2}$ eV the highest energy 107 ± 8 EeV 42662 high-quality FD events 842 events with E > 10 EeV systematic uncertainty below 10 $g cm^{-2}$ resolution 26 g cm^{-2} at $10^{17.8} \text{ eV}$ JE/dX [PeV/(g/cm²) χ²/Ndf= 174.7/164 15 g cm⁻² for $E > 10^{19.3}$ eV 100 80 SD 60 CO LA 20 I M 200 600 1000 1200 slant depth [g/cm²] E [EeV] X_{max} [g/cm² PRD 90 (2014) 122005, update at ICRC (2017)

Rate of change of X_{max} with energy

One of the most reliable mass indicators

simulations: $54-64 \ [g \ cm^{-2}/decade]$ for constant composition

Pierre Auger Coll., PRL 2011, PRD 2014; update at ICRC17

Composition is getting lighter below ≈ 2 EeV and heavier afterwards

X_{max} moments: data vs simulations

Composition is getting lighter below ≈ 2 EeV and heavier afterwards

Composition from fits of X_{max} distributions

PRD 90 (2014) 122006, update at ICRC 2017

Auger: mass composition from fits of X_{max} distributions

fractions of p and He change much with energy, Fe is almost absent

'Ankle' in all-particle spectrum

. . .

one component changing slope? $\sigma(\ln A) \approx 0$ (as in 'dip' model) several components with different slopes? $\sigma(\ln A) \neq 0$ (as in 'mixed' model)

I. Valiño for Auger Collab., ICRC 2015, PoS 271

 $\langle \ln A \rangle$ and $\sigma^2(\ln A)$ near 'ankle' (lg(*E*/eV) \approx 18.7)

conversion from first two moments of X_{max} distributions

Less model-dependent estimate of $\sigma(\ln A)$?

Combine muon content N_{μ} and X_{\max}

properties follow already from the Heitler-Matthews model [J. Matthews, ApP 22 (2005) 387]

Depth of shower maximum

$$\langle X_{\max} \rangle = \langle X_{\max}^{p} \rangle - D_{p} \langle \ln A \rangle$$

$$\langle X_{\max}^{p} \rangle \approx \langle X_{\max}^{Fe} \rangle + (80 - 100) \text{ g cm}^{-2}$$
Number of muons
$$N_{\mu} \sim E^{\beta} \ (\beta \approx 0.9)$$
superposition model $1[A, E] \rightarrow A[1, E/A] \stackrel{\texttt{Z}}{=}$
^{8.6}

$$Fe \qquad \text{QGSJet II.04}$$
^{8.6}

$$Fe \qquad \text{QGSJet II.04}$$

$$N_{\mu} \sim A^{1-\beta}, \ \frac{N_{\mu}(\text{Fe})}{N_{\mu}(p)} \approx 1.4$$

 $E = 5 \times 10^{19} \text{ eV}$
 $600 \ 700 \ 800 \ 900 \ X_{\text{max}} \ (\text{g/cm}^2)$

Relative placement of nuclei in $(X_{\text{max}}, N_{\mu})$ is weakly model-dependent

The key idea

heavier nuclei produce shallower showers with larger signal (more muons) general characteristics of air showers / minor model dependence

[P. Younk, M. Risse, ApP 35 (2012) 807]

More negative correlation \Rightarrow more mixed composition

[Auger, PLB 2016]

Data vs pure beams

 $\begin{array}{c} r_{\rm G}(X^*_{\rm max},\,S^*_{38}) \ {\rm for \ protons} \\ \\ {\rm EPOS-LHC} \quad {\rm QGSJetII-04} \quad {\rm Sibyll \ 2.1} \\ 0.00 \qquad +0.08 \qquad +0.07 \\ \\ {\rm difference \ to \ data} \\ \approx 5\sigma \qquad \approx 8\sigma \qquad \approx 7.5\sigma \\ \\ {\rm difference \ is \ larger \ for \ other \ pure \ beams} \\ {\rm difference \ is \ } \gtrsim 5\sigma \ {\rm for \ all \ p-He \ mixes} \end{array}$

primary composition near the ankle is mixed nuclei with A>4 needed to explain data

systematics plays only a minor role $\sigma_{syst}(r_{\rm G}) \lesssim 0.01$

due to invariance of $r_{\rm G}$ to additive and multiplicative scale transformations

rG ranking correlation coefficient [R. Gideon, R. Hollister, JASA 82 (1987) 656]

 $r_{\rm G}(X^*_{
m max}, S^*_{38})$ vs dispersion of masses $\sigma(\ln A)$

Dispersion of masses: data vs simulations

data are compatible with dispersion of masses $\sigma(\ln A) \simeq 1.35 \pm 0.35$

X_{max} from the SD up to 100 EeV

PRD 96, 122003 (2017)

Risetime $t_{1/2}$ — time of increase from 10% to 50% of total integrated signal

 $t_{1/2}$ sensitivity to shower development stage mass of the primary particle $t_{1/2}$ sensitivity to EM/ μ hadronic interactions Signal [VEM peak Total Signal E.M. Component Muon Component QGSJetll-04 E = 10 EeV $\theta = 30^{\circ}$ r = 1000 m 20 60 100 80 time [25 ns]

plot: P. Sanchez-Lucas

 X_{max} from the SD up to 100 EeV # events 750 m PRD 96, 122003 (2017) 27553 54022 X_{max} [g cm⁻²] Calibration with X_{max} from the fluorescence detector 750 m array 1000 900 $\langle X_{max} \rangle$ [g cm⁻² 900 1500 m array 800 850 750 m array Xmax ICRC 2015 700 800 600 500 750 -4 -3 -2 X_{max} [g cm⁻²] 1500 m array 700 1000 900 650 þ 800 700 EPOS-LHC 600 QGSJetII-04 600 500 550 17 17.5 18 18.5 19 19.5 20 log(E/eV)

 Δ_s — deviation from expected average behavior of $t_{1/2}$

30

 X_{max} from the SD up to 100 EeV

PRD 96, 122003 (2017)

compatible results from FD X_{max} and Δ -method first indications that rise of primary mass might be stopping above 50 EeV

Open questions

'Old' astrophysical models ('ankle', 'dip', 'mixed') are disfavored

Is there a subdominant light component at the highest energies? If not, can we discover sources for observed mixed/heavy composition? End of the CR spectrum: nuclei fragmentation or maximum source energy? How to describe energy spectrum and evolution of the mass composition?

Astrophysical model for spectrum–composition fit

```
sources: extragalactic, identical, uniformly distributed, no evolution
injected nuclei: <sup>1</sup>H. <sup>4</sup>He. <sup>14</sup>N. <sup>28</sup>Si. <sup>56</sup>Fe
cutoff: rigidity (R = E/Z) dependent
cosmic photon background: CMB, extragalactic background light
energy losses: e^+ - e^- and photo-meson production, photo-disintegration
extragalactic magnetic fields: no interaction (1D propagation)
propagation software: SimProp, CRPropa
energy range: E > 5 EeV (above 'ankle' feature of spectrum)
interactions in atmosphere: EPOS-LHC, QGSJetII-04, Svbill 2.1
data to fit: SD spectrum (47767 events), X_{max} distributions (1446 events)
```

Astrophysical model for spectrum-composition fit

Model describing ankle and mass composition

Unger et al., PRD 92 (2015) 123001

Photo-disintegration in region surrounding acceleration site

High-pass filter: high energy nuclei escape, interactions at low energies produce lighter nuclei with softer spectrum

Injecting silicon with $E_{\rm max} = Z \times 10^{18.5} = 4.6 \times 10^{19}$ eV, $\gamma = -1$ one gets ankle and complex composition evolution

Model describing ankle and mass composition

Unger et al., PRD 92 (2015) 123001

Photo-disintegration in region surrounding acceleration site

High-pass filter: high energy nuclei escape, interactions at low energies produce lighter nuclei with softer spectrum

Injecting silicon with $E_{\rm max}=Z\times 10^{18.5}=4.6\times 10^{19}$ eV, $\gamma=-1$ one gets ankle and complex composition evolution

Good description of Auger data

Observation of large-scale anisotropy for $E \ge 8$ EeV

Data set, 1/1/2004-31/08/2016 $0^{\circ} \le \theta \le 80^{\circ}$ declination $-90^{\circ} \le \delta \le 45^{\circ}$ 85% sky coverage exposure 76,800 km² sr year

Rayleigh analysis in right ascension

Energy	Number	Amplitude	Phase	Probability
(EeV)	of events	rα	φ _α (°)	P (≥ r _α)
4 to 8	81,701	$0.005 \ ^{+0.006}_{-0.002}$	80 ± 60	0.60
≥8	32,187	0.047 +0.008 -0.007	100 ± 10	2.6×10^{-8}

Amplitude for $E \ge 8$ EeV: two-sided Gaussian significance 5.6σ

Observation of large-scale anisotropy for $E \ge 8$ EeV

Science 57 (2017) 1266

Consistency with isotropy for 4 EeV < E < 8 EeV disfavors dominant galactic CR origin

Energies above 8 EeV

Distance of 125° in dipole direction vs galactic center: better explained by extragalactic CR origin NB: for E > 40 EeV no anisotropies found in direction of galactic center or galactic plane [ApJ 804, 15 (2015)]

Comparing to dipole of 2MASS Redshift Survey catalog of galaxies $(l, b) = (251^{\circ}, 38^{\circ})$ galactic magnetic fields change position of 2MRS dipole (as indicated for E/Z = 2 EeV or 5 EeV) and reduce its amplitude (might explain lower amplitude for 4 EeV < E < 8 EeV)

galactic coordinates, Galactic center is at the origin, measured dipole direction is marked with a cross

Correlation with starburst galaxies and $\gamma AGNs$

ApJL 853 (2018) L29

Starburst galaxies

Significance 4σ , E > 39 EeV (894 events)

$\gamma {\sf AGNs}$

Significance 2.7 σ , E > 60 EeV (177 events)

 $\gamma AGNs$ Observed Excess Map - E > 60 Eev

Particle astronomy for mixed composition?

Backtracking (circles - initial directions) using different models of galactic magnetic fields

Select low-Z component (if any) Correct deflections? Restrict analysis to certain sky regions?

International agreement for operation of the Auger Observatory until 2025

Main upgrade

plastic scintillator detectors and radio antennas on all water-Cherenkov stations: to achieve separation of electromagnetic and muonic components

Aims

Composition sensitivity in the flux suppression region

Sensitivity to 10% proton fraction in this region (important for GZK photon and neutrino fluxes)

Composition enhanced anisotropy studies

Search for new phenomena in hadronic interactions

Additional enhancements

FD: increase duty cycle operating in higher night sky background Underground muon detectors on area of 23.5 km² Electronics: sampling rate 120 MHz (currently 40 MHz) additional small PMTs to increase dynamic range

R. Engel for Auger Collab., ICRC 2015, PoS 686

backups

$\langle X_{\rm max} \rangle$ from Auger and Telescope Array

M. Unger for Auger and Telescope Array Collabs., ICRC 2015, PoS 307

$\langle X_{\max} \rangle$: Auger vs different TA measurements

A. Yushkov for Auger and TA, UHECR 2018

Discrepancy Auger – TA (Black Rock Mesa/Long Ridge) is larger and energy-dependent

average difference: $\langle \Delta \rangle = (2.9 \pm 2.7 \text{ (stat.)} \pm 18 \text{ (syst.)}) \text{ g/cm}^2$

preliminary

Auger vs TA

A. Yushkov for Auger and TA, UHECR 2018

 $\langle X_{\rm max}^{\rm TA}\rangle < \langle X_{\rm max}^{\rm Auger}\rangle$ for almost all energies

agreement within $\left(stat+sys\right)$ errors

 $\sigma(X_{\max}^{TA}) > \sigma(X_{\max}^{Auger})$ for lg(E/eV) = 18.6 - 19.0

