

Mass composition of ultra-high energy cosmic rays:
results from the Pierre Auger Observatory
and their astrophysical implications
Alexey Yushkov
Mexical implications
Alexey Yushkov
Oddělení astročásticové fyziky
FZU Mass composition of ultra-high energy cosmic rays: results from the Pierre Auger Observatory and their astrophysical implications

Alexey Yushkov

Oddělení astročásticové fyziky Fyzikální ústav AV ČR, v.v.i.

Cosmic accelerators Cosmic ray flux and interaction energies

 $E_{\rm lab}$ up to 10^7 times larger than at the LHC, flux ≈ 1 part/km²/year at 10^{19} eV Spectral features \rightarrow composition (elemental spectra) \rightarrow sources, propagation

Galactic cosmic rays

Favored source candidate [but there are alternatives] Supernova remnants ↓ Collisionless shock waves ↓ Diffusive shock acceleration

Injection and propagation scenarios: similar rigidity-dependent cut-offs

Injection: maximum source energy $E_{\text{max}} \approx Z \times 3$ PeV protons $E_{\rm max} \approx 3$ PeV, iron $E_{\rm max} \approx 80$ PeV B. Peters, Il Nuov. Cim. 22 (1961) 800

Propagation: energy-dependent leakage from the Milky Way knee-like structure in escape time at $E \approx Z \times \text{few} \times \text{PeV}$ ratio of CR fluxes galactic/extragalactic $\approx 1/1$ at ≈ 200 PeV Giacinti et al., PRD 90 (2014) 041302(R), 91 (2015) 083009

Extensive air showers (EAS)

KASCADE and KASCADE-Grande $TUUUU$ and TU

KArlsruhe Shower Core and Array DEtector KASCADE 200×200 m²; KASCADE – Grande 700×700 m² scintillator arrays . The Grande array is installed over an irregular trian-

2D electron – muon shower size spectra \rightarrow primary spectra of 5 mass groups

KASCADE spectra in the knee region

Knee in light-element spectra at 3 $-$ 5 PeV ($\Delta\gamma \approx 0.4$)

 $FASCADE$ and $21/2000$ based results for the energy spectra of H, He, and C (1.1 and Fe (right) and Fe (right) and B correspond to estimates of the systematic uncertainties for the QGSJet/GHEISHA solutions. KASCADE, ApP 31 (2009) 86

KASCADE – Grande spectra in the 2nd knee region

Heavy component — knee at ≈ 80 PeV Light component — hardening at ≈ 120 PeV *KASCADE-Grande* A. Haungs

Start of transition to extragalactic component?

\approx 10 years ago: astrophysical models

'Ankle' and 'Mixed'

ankle — transition from galactic (\approx iron) to extragalactic CR (proton/mixed) galactic \approx extragalactic: $@E_{ankle} \approx 5$ EeV ('Ankle'); $@E \approx 0.5 - 1$ EeV ('Mixed')

'Dip'

transition around 2nd knee (from \approx iron to proton)

ankle — propagation effect due to $p + \gamma_{\text{CMB}} \rightarrow p + e^+ + e^-$

cutoff — GZK effect $p + \gamma_{\rm CMB} \rightarrow p(n) + \pi^0(\pi^+)$

T. Wibig, A. Wolfendale, J. Phys. G 31 (2005) 255; A. Hillas, J. Phys. G 31 (2005) R95; V. Berezinsky et al., PLB 612 (2005) 147; D. Allard et al. A&A 443 (2005) L29, A&A 473 (2007) 59; R. Aloisio et al., PRD 77 (2008) 025007

 ≈ 15 years ago: data on mass composition $> 10^{17}$ eV \approx 15 years ago: data on mass composition $>$ 10 $^\circ$ eV $_\odot$

trend toward lighter composition, in agreement with astrophysical models?

 ≈ 15 years ago: data on mass composition $> 10^{17}$ eV Y . Y

Fig. 8. Fe fraction from various experiments: Fly's Eye (\triangle) , AGASA A100 (\blacksquare), AGASA A1 (\Box) using SIBYLL1.5 ([6] and references therein) and Haverah Park [1], using $QGSJET98$ (O). The mass composition determined in this paper from Volcano Ranch data, using $QGSJET98$ (\bullet), is shown, together with an estimate of the error and energy range.

"Our knowledge about the mass of primary CR at $E > 10^{17}$ eV is rudimentary" A. Watson

The Pierre Auger Collaboration

 \approx 400 members from \approx 90 institutions in 16 countries

The Pierre Auger Observatory was taken during the maintenance. FD telescopes at Los Morados

Water-Cherenkov station

The Pierre Auger Observatory FD telescopes at Los Morados

Water-Cherenkov station

The Pierre Auger Observatory FD telescopes at Los Morados

Water-Cherenkov station

The Pierre Auger Observatory

Fluorescence detector (FD) [longitudinal profile]

duty cycle 15 %

 $24 + 3$ fluorescence telescopes at 4 locations

Surface detector (SD) [lateral distribution]

duty cycle 100 %

- 1660 water-Cherenkov stations at 1500 m spacing, 3000 $km²$
- 61 water-Cherenkov stations at 750 m spacing, 23.5 $km²$

Mendoza province, Argentina

Longitudinal shower development

≈ calorimetric energy measurement
≈ calorimetric energy measurement FD weak dependence on hadronic models

Mass composition sensitivity $\langle X_{\rm max}^p \rangle \approx \langle X_{\rm max}^{\rm Fe} \rangle + (80 - 100)$ g cm⁻² $\sigma(X_{\text{max}}^p)/\sigma(X_{\text{max}}^{\text{Fe}}) \approx 3$ Height a.s.l. (m)

Measurements of the depth of shower maximum *X*max

11 years of data 12.2004 − 12.2015 energies $E > 10^{17.2}$ eV the highest energy 107 ± 8 EeV 42662 high-quality FD events 842 events with $E > 10$ EeV systematic uncertainty below 10 $g \text{ cm}^{-2}$ resolution 26 $\rm g\,cm^{-2}$ at $10^{17.8}$ eV 15 g cm^{-2} for $E > 10^{19.3}$ eV X_{max} [g/cm² 740 750 760 770 780 790 E [EeV] 65 70 75 80 85 90 95 100 **LL LM LA CO SD** event 201022604238 **]² slant depth [g/cm 200 400 600 800 1000 1200** dE/dX [PeV/(g/cm²]]
8 8 8 8
^{-- - - - - - - - - - - - - -} **0 20 40 60 80 100 120 /Ndf= 174.7/164 ²** ^χ PRD 90 (2014) 122005, update at ICRC (2017) 17

Rate of change of *X*max with energy

One of the most reliable mass indicators

simulations: $54 - 64$ [g cm⁻²/decade] for constant composition

Pierre Auger Coll., PRL 2011, PRD 2014; update at ICRC17

Composition is getting lighter below \approx 2 EeV and heavier afterwards

*X*max moments: data vs simulations

Composition is getting lighter below \approx 2 EeV and heavier afterwards

Composition from fits of X_{max} distributions

PRD 90 (2014) 122006, update at ICRC 2017

Auger: mass composition from fits of X_{max} distributions

'Ankle' in all-particle spectrum

. . .

one component changing slope? $\sigma(\ln A) \approx 0$ (as in 'dip' model)

several components with different slopes? $\sigma(\ln A) \neq 0$ (as in 'mixed' model)

I. Vali˜no for Auger Collab., ICRC 2015, PoS 271

 $\langle \ln A \rangle$ and $\sigma^2(\ln A)$ near 'ankle' $(\lg(E/\text{eV}) \approx 18.7)$

conversion from first two moments of *X*max distributions

Less model-dependent estimate of $\sigma(\ln A)$?

Combine muon content N_u and X_{max}

properties follow already from the Heitler-Matthews model [J. Matthews, ApP 22 (2005) 387]

Depth of shower maximum

Relative placement of nuclei in $(X_{\text{max}}, N_{\mu})$ is weakly model-dependent

The key idea

heavier nuclei produce shallower showers with larger signal (more muons) general characteristics of air showers / minor model dependence

More negative correlation \Rightarrow more mixed composition

[Auger, PLB 2016]

Data vs pure beams

 $r_{\text{G}}(X_{\text{max}}^*,\,S_{38}^*)$ for protons EPOS-LHC QGSJetII-04 Sibyll 2.1 $0.00 +0.08 +0.07$ difference to data $\approx 5\sigma$ $\approx 8\sigma$ $\approx 7.5\sigma$ difference is larger for other pure beams difference is $\geq 5\sigma$ for all p – He mixes

primary composition near the ankle is mixed nuclei with $A > 4$ needed to explain data

systematics plays only a minor role $\sigma_{syst}(r_{\rm G}) \lesssim 0.01$

due to invariance of r_G to additive and multiplicative scale transformations

r^G ranking correlation coefficient [R. Gideon, R. Hollister, JASA 82 (1987) 656]

 $r_{\text{G}}(X_{\text{max}}^*, S_{38}^*)$ vs dispersion of masses $\sigma(\ln A)$

Dispersion of masses: data vs simulations

data are compatible with dispersion of masses $\sigma(\ln A) \simeq 1.35 \pm 0.35$

*X*max from the SD up to 100 EeV

PRD 96, 122003 (2017)

Risetime $t_{1/2}$ — time of increase from 10% to 50% of total integrated signal

*X*max from the SD up to 100 EeV PRD 96, 122003 (2017)

Calibration with X_{max} from the fluorescence detector

*X*max from the SD up to 100 EeV

PRD 96, 122003 (2017)

compatible results from FD *X*max and ∆-method first indications that rise of primary mass might be stopping above 50 EeV

Open questions

'Old' astrophysical models ('ankle', 'dip', 'mixed') are disfavored

Is there a subdominant light component at the highest energies? primordial mix of H and He nuclei (H/He) is also shown for comparison. Contrary to P^U , PSFR and PLEC, the latter has a GCR/EGCR transition at \mathcal{L} If not can we discover sources for observed mixed/heavy composition? If not, can we discover sources for observed mixed/heavy composition? How to describe energy spectrum and evolution of the mass composition? End of the CR spectrum: nuclei fragmentation or maximum source energy?

Astrophysical model for spectrum–composition fit JCAP 04 (2017) 038

sources: extragalactic, identical, uniformly distributed, no evolution injected nuclei: 1 H, 4 He, 14 N, 28 Si, 56 Fe cutoff: rigidity $(R = E/Z)$ dependent cosmic photon background: CMB, extragalactic background light energy losses: $e^+ - e^-$ and photo-meson production, photo-disintegration extragalactic magnetic fields: no interaction (1D propagation) propagation software: SimProp, CRPropa energy range: $E > 5$ EeV (above 'ankle' feature of spectrum) interactions in atmosphere: EPOS-LHC, QGSJetII-04, Sybill 2.1 data to fit: SD spectrum (47767 events), *X*max distributions (1446 events)

Astrophysical model for spectrum–composition fit

Model describing ankle and mass composition

Unger et al., PRD 92 (2015) 123001

Photo-disintegration in region surrounding acceleration site

High-pass filter: high energy nuclei escape, interactions at low energies produce lighter nuclei with softer spectrum

Injecting silicon with $E_{\text{max}} = Z \times 10^{18.5} = 4.6 \times 10^{19}$ eV, $\gamma = -1$ one gets ankle and complex composition evolution

Model describing ankle and mass composition

Unger et al., PRD 92 (2015) 123001

Photo-disintegration in region surrounding acceleration site

High-pass filter: high energy nuclei escape, interactions at low energies produce lighter nuclei with softer spectrum

Injecting silicon with $E_{\text{max}} = Z \times 10^{18.5} = 4.6 \times 10^{19}$ eV, $\gamma = -1$ one gets ankle and complex composition evolution

Good description of Auger data

Observation of large-scale anisotropy for $E \geq 8$ EeV

Data set, 1/1/2004–31/08/2016 $0^{\circ} \leq \theta \leq 80^{\circ}$ declination $-90^\circ < \delta < 45^\circ$ 85% sky coverage exposure 76,800 km² sr year

Rayleigh analysis in right ascension

Amplitude for *E* ≥ 8 EeV: two-sided Gaussian significance 5.6*σ*

Observation of large-scale anisotropy for $E \geq 8$ EeV

Science 57 (2017) 1266

Consistency with isotropy for $4 \text{ EeV} < E < 8 \text{ EeV}$ disfavors dominant galactic CR origin

Energies above 8 EeV

Distance of 125° in dipole direction vs galactic center: better explained by extragalactic CR origin NB: for $E > 40$ EeV no anisotropies found in direction of galactic center or galactic plane [ApJ 804, 15 (2015)]

Comparing to dipole of 2MASS Redshift Survey catalog of galaxies $(l,b)=(251^{\circ},38^{\circ})$ galactic magnetic fields change position of 2MRS dipole (as indicated for $E/Z = 2$ EeV or 5 EeV) and reduce its amplitude (might explain lower amplitude for $4 \text{ EeV} < E < 8 \text{ EeV}$)

galactic coordinates, Galactic center is at the origin, measured dipole direction is marked with a cross

Correlation with starburst galaxies and *γ*AGNs

ApJL 853 (2018) L29

Starburst galaxies

Significance 4σ , $E > 39$ EeV (894 events)

*γ*AGNs

Significance 2.7 σ , $E > 60$ EeV (177 events)

Particle astronomy for mixed composition?

Backtracking (circles — initial directions) using different models of galactic magnetic fields

M. Unger, G. Farrar, ICRC 2017, UHECR 2018

Select low-*Z* component (if any)

Correct deflections? Restrict analysis to certain sky regions?

Additional enhancements

FD: increase duty cycle operating in higher night sky background Underground muon detectors on area of 23.5 km² Electronics: sampling rate 120 MHz (currently 40 MHz) additional small PMTs to increase dynamic range

R. Engel for Auger Collab., ICRC 2015, PoS 686

Next 10 years: AugerPrime upgrade

International agreement for operation of the Auger Observatory until 2025

Main upgrade

plastic scintillator detectors and radio antennas on all water-Cherenkov stations: to achieve separation of electromagnetic and muonic components

Aims

- Composition sensitivity in the flux suppression region
- Sensitivity to 10% proton fraction in this region (important for GZK photon and neutrino fluxes)
- Composition enhanced anisotropy studies
- Search for new phenomena in hadronic interactions

backups

$\langle X_{\text{max}} \rangle$ from Auger and Telescope Array

M. Unger for Auger and Telescope Array Collabs., ICRC 2015, PoS 307

Auger vs different TA measurements

A. Yushkov for Auger and TA, UHECR 2018

Discrepancy Auger – TA (Black Rock Mesa/Long Ridge) is larger and energy-dependent

average difference: $\langle \Delta \rangle = (2.9 \pm 2.7 \text{ (stat.)} \pm 18 \text{ (syst.)}) \text{ g/cm}^2$

preliminary preliminary

Auger vs TA

A. Yushkov for Auger and TA, UHECR 2018

 $\langle X_{\rm max}^{\rm TA} \rangle < \langle X_{\rm max}^{\rm Auger} \rangle$ for almost all energies

agreement within $(stat + sys)$ errors

 $\sigma(X_{\text{max}}^{\text{TA}}) > \sigma(X_{\text{max}}^{\text{Auger}})$ for $\lg(E/\text{eV}) = 18.6 - 19.0$

