Gravitational formfactors and pressure in elementary particles

FU AV CR, July 25, 2018

Oleg Teryaev, Joint Institute for Nuclear Research, Dubna, Russia

The pressure distribution inside the proton

LETTER

Main topics

- Energy momentum tensor (gravitational) formfactors
- Gravitomagnetism and post-Newtonian equivalence principle
- Spin-gravity interactions: anisotropic Universe
- Quadrupole FF, pressure and stability
- Holographic sum rule and pressure from subtraction
- Proton data and pressure distribution
- Photons as stable macroscopic objects
- What else (viscous protons etc.)
- **Conclusions**

Gravitational Formfactors

 $\langle p'|T^{\mu\nu}_{q,g}|p\rangle = \bar{u}(p')\Big[A_{q,g}(\Delta^2)\gamma^{(\mu}p^{\nu)} + B_{q,g}(\Delta^2)P^{(\mu}i\sigma^{\nu)\alpha}\Delta_{\alpha}/2M]u(p)$

E Conservation laws - zero Anomalous Gravitomagnetic Moment : $\mu_G = J$ (q=2)

 $P_{q,g} = A_{q,g}(0)$ $A_q(0) + A_q(0) = 1$

 $J_{q,g} = \frac{1}{2} \left[A_{q,g}(0) + B_{q,g}(0) \right] \qquad A_q(0) + B_q(0) + A_g(0) + B_g(0) = 1$

- **Nay be extracted from high-energy** experiments/NPQCD calculations
- **Describe the partition of angular momentum between** quarks and gluons
- Describe interaction with both classical and TeV gravity

Generalized Parton Distributions (related to matrix elements of non local operators) – models for both EM and Gravitational Formfactors (Selyugin,OT '09)

Smaller mass square radius (attraction vs repulsion!?)

 \vec{b}

$$
\rho(b) = \sum_{q} e_q \int dx q(x, b) = \int d^2q F_1(Q^2 = q^2) e^{i\vec{q}}
$$

$$
= \int_0^\infty \frac{q dq}{2\pi} J_0(qb) \frac{G_E(q^2) + \tau G_M(q^2)}{1 + \tau}
$$

$$
\rho_0^{\text{Gr}}(b) = \frac{1}{2\pi} \int_{\infty}^{0} dq q J_0(qb) A(q^2)
$$

FIG. 17: Difference in the forms of charge density F_1^P and "matter" density (A)

Electromagnetism vs Gravity (OT'99)

- Interaction field vs metric deviation
- $M = \frac{1}{2} \sum_{\alpha} \langle P' | T_{q,G}^{\mu\nu} | P \rangle h_{\mu\nu}(q)$ $M = \langle P' | J_q^{\mu} | P \rangle A_{\mu}(q)$ **Static limit**
- $\sum \langle P|T_i^{\mu\nu}|P\rangle = 2P^{\mu}P^{\nu}$ $\langle P|J_q^{\mu}|P\rangle = 2e_qP^{\mu}$ $\overline{q, G}$ $h_{00} = 2\phi(x)$

$$
M_0 = \langle P|J_q^{\mu}|P\rangle A_{\mu} = 2e_q M \phi(q) \qquad M_0 = \frac{1}{2} \sum_{q,G} \langle P|T_i^{\mu\nu}|P\rangle h_{\mu\nu} = 2M \cdot M\phi(q)
$$

 \blacksquare Mass as charge – equivalence principle

Gravitomagnetism

 Gravitomagnetic field (weak, except in gravity waves) – action on spin from $M = \frac{1}{2} \sum_{\alpha} \langle P'|T_{q,G}^{\mu\nu}|P\rangle h_{\mu\nu}(q)$

$$
\vec{HJ} = \frac{1}{2} rot\vec{g}; \ \vec{g_i} \equiv g_{0i}
$$

 spin dragging twice smaller than EM

Lorentz force – similar to EM case: factor $\frac{1}{2}$ cancelled with 2 from $h_{00} = 2\phi(x)$ Larmor frequency same as EM TΤ μ

$$
\nu_J = \frac{\mu_G}{J} H_J = \frac{H_L}{2} = \omega_L \, \vec{H}_L = \tau \, \sigma \vec{g}
$$

 Orbital and Spin momenta dragging – the same - Equivalence principle

Equivalence principle

- Newtonian "Falling elevator" well known and checked (also for elementary particles)
- **Post-Newtonian gravity action on SPIN** known since 1962 (Kobzarev and Okun'; ZhETF paper contains acknowledgment to Landau: probably his last contribution to theoretical physics before car accident); rederived from conservarion laws - Kobzarev and V.I. Zakharov
- **Anomalous gravitomagnetic (and electric-CP**odd) moment iz ZERO or
- **Classical and QUANTUM rotators behave in** the SAME way

Experimental test of PNEP

■ Reinterpretation of the data on G(EDM) PHYSICAL REVIEW search **LETTERS**

> VOLUME 68 **13 JANUARY 1992**

Search for a Coupling of the Earth's Gravitational Field to Nuclear Spins in Atomic Mercury

NUMBER 2

B. J. Venema, P. K. Majumder, S. K. Lamoreaux, B. R. Heckel, and E. N. Fortson Physics Department, FM-15, University of Washington, Seattle, Washington 98195 (Received 25 Sentember 1991)

If (CP-odd!) GEDM=0 -> constraint for AGM (Silenko, OT'07) from Earth rotation– was considered as obvious (but it is just EP! quantum measurement in rotating frame crucial) background

 $|\chi(^{201}\text{Hg}) + 0.369\chi(^{199}\text{Hg})| < 0.042$ (95\%C.L.)

Indirect probe of spin-gravity coupling

- **Matrix elements of energy-momentum** tensors may be extracted from accurate high-energy experiments ("3D nucleon picture")
- **Allow to probe the couplings to quarks** and gluons separately

Equivalence principle for moving particles

- **Compare gravity and acceleration:** gravity provides EXTRA space components of metrics $h_{zz} = h_{xx} = h_{yy} = h_{00}$
- **Matrix elements DIFFER**

 $\mathcal{M}_{g} = (\epsilon^2 + p^2)h_{00}(q), \qquad \mathcal{M}_{a} = \epsilon^2 h_{00}(q)$

- Ratio of accelerations: $R = \frac{\epsilon^2 + p^2}{\epsilon^2}$ confirmed by explicit solution of Dirac equation (Silenko, OT, '05)
- **Arbitrary fields Obukhov, Silenko, OT** '09,'11,'13

Gravity vs accelerated frame for spin and helicity

- Spin precession well known factor 3 (Probe B; spin at satellite – probe of PNEP!) – smallness of relativistic correction (\sim P²) is compensated by $1/$ P^2 in the momentum direction precession frequency
- **Helicity flip the same!**
- No helicity flip in gravitomagnetic field another formulation of PNEP (OT'99) and
- **Filip by "gravitoelectric" field: relic neutrino?** Black hole?

$$
\frac{d\sigma_{+-}}{d\sigma_{++}} = \frac{tg^2(\frac{\phi}{2})}{(2\gamma - \gamma^{-1})^2}
$$

Gyromagnetic and Gravigyromagnetic ratios

- Free particles coincide
- \blacksquare <P+q|T^{mn} |P-q> = P^{{m}<P+q|J^{n}}|P-q>/e up to the terms linear in q
- Gravitomagnetic $g=2$ for any spin
- Special role of q=2 for ANY spin (asymptotic freedom for vector bosons)
- **Should Einstein know about PNEP, the outcome of his** and de Haas experiment would not be so surprising
- Recall also g=2 for Black Holes. Indication of "quantum" nature?!

Cosmological implications of PNEP

- Necessary condition for Mach's Principle (in the spirit of Weinberg's textbook) -
- **Lense-Thirring inside massive** rotating empty shell (=model of Universe)
- **For flat "Universe"** precession frequency equal to that of shell rotation
- Simple observation-Must be the same for classical and quantum rotators – PNEP!

■ More elaborate models - Tests for cosmology ?!

Yet another approach to rotation - Dirac Equation

• Metric of the type

 $ds^2 = V^2c^2dt^2 - \delta_{\hat{\alpha}\hat{\beta}}W^{\hat{\alpha}}{}_cW^{\hat{\beta}}{}_d(dx^c - K^c c dt)(dx^d - K^d c dt).$

Tetrads in Schwinger gauge

$$
e_i^{\hat{0}} = V \delta_i^0, \qquad e_i^{\hat{a}} = W^{\hat{a}}{}_b (\delta_i^b - cK^b \delta_i^0),
$$

$$
e_{\hat{0}}^i = \frac{1}{V} (\delta^i{}_0 + \delta^i{}_a cK^a), \qquad e_{\hat{a}}^i = \delta^i{}_b W^b{}_a, \qquad a = 1, 2, 3,
$$

 $(i\hbar \gamma^{\alpha} D_{\alpha} - mc)\Psi = 0, \qquad \alpha = 0, 1, 2, 3.$ **Dirac eq**

 $D_{\alpha} = e_{\alpha}^i D_i, \qquad D_i = \partial_i + \frac{iq}{\hbar} A_i + \frac{i}{4} \sigma^{\alpha \beta} \Gamma_{i \alpha \beta}.$

Dirac hamiltonian

 $\Gamma_{i\hat{a}\hat{0}} = \frac{c^2}{V} W^b{}_{\hat{a}} \partial_b V e_i{}^{\hat{0}} - \frac{c}{V} Q_{(\hat{a}\hat{b})} e_i{}^{\hat{b}},$ ■ Connection

$$
\Gamma_{i\hat{a}\hat{b}} = \frac{c}{V} Q_{[\hat{a}\hat{b}]} e_i^{\hat{b}} + (C_{\hat{a}\hat{b}\hat{c}} + C_{\hat{a}\hat{c}\hat{b}} + C_{\hat{c}\hat{b}\hat{a}}) e_i^{\hat{c}}.
$$

$$
Q_{\hat{a}\hat{b}} = g_{\hat{a}\hat{c}} W^d{}_{\hat{b}} \left(\frac{1}{c} \dot{W}^{\hat{c}}{}_d + K^e \partial_e W^{\hat{c}}{}_d + W^{\hat{c}}{}_e \partial_d K^e\right),
$$

$$
\mathcal{C}_{\hat{a}\hat{b}}{}^{\hat{c}} = W^d{}_{\hat{a}} W^e{}_{\hat{b}} \partial_{[d} W^{\hat{c}}{}_{e]}, \qquad \mathcal{C}_{\hat{a}\hat{b}\hat{c}} = g_{\hat{c}\hat{d}} \mathcal{C}_{\hat{a}\hat{b}}{}^{\hat{d}}.
$$

Hermitian Hamiltonian $i\hbar \frac{\partial \psi}{\partial t} = \mathcal{H} \psi$. $\psi = (\sqrt{-g}e_{\hat{0}}^0)^{\frac{1}{2}}\Psi$.

$$
\mathcal{H} = \beta mc^2 V + q\Phi + \frac{c}{2} (\pi_b \mathcal{F}^b{}_a \alpha^a + \alpha^a \mathcal{F}^b{}_a \pi_b)
$$

$$
+ \frac{c}{2} (\mathbf{K} \cdot \boldsymbol{\pi} + \boldsymbol{\pi} \cdot \mathbf{K}) + \frac{\hbar c}{4} (\boldsymbol{\Xi} \cdot \boldsymbol{\Sigma} - \mathbf{Y} \gamma_5).
$$

$$
\Upsilon = V \epsilon^{\hat{a}\hat{b}\hat{c}} \Gamma_{\hat{a}\hat{b}\hat{c}} = -V \epsilon^{\hat{a}\hat{b}\hat{c}} C_{\hat{a}\hat{b}\hat{c}},
$$

$$
\Xi_{\hat{a}} = \frac{V}{c} \epsilon_{\hat{a}\hat{b}\hat{c}} \Gamma_{\hat{0}}{}^{\hat{b}\hat{c}} = \epsilon_{\hat{a}\hat{b}\hat{c}} Q^{\hat{b}\hat{c}}.
$$

Foldy-Wouthuysen transformation

Even and odd parts $\frac{\mathcal{H}}{\beta \mathcal{E}} = \varepsilon \beta$, $\beta \mathcal{B} = -\mathcal{O} \beta$.

FW transformation (Silenko '08)
 $U = \frac{\beta \epsilon + \beta \mathcal{M} - \mathcal{O}}{\beta \epsilon + \beta \mathcal{M} - \mathcal{O}}$ $\phi_{FW} = U \psi$, $\mathcal{H}_{FW} = U \mathcal{H} U^{-1} - i \hbar U \partial_t U^{-1}$. $U = \frac{\beta \epsilon + \beta \mathcal{M} - \mathcal{O}}{\sqrt{(\beta \epsilon + \beta \mathcal{M} - \mathcal{O})^2}} \beta,$ $U^{-1} = \beta \frac{\beta \epsilon + \beta \mathcal{M} - \mathcal{O}}{\sqrt{(\beta \epsilon + \beta \mathcal{M} - \mathcal{O})^2}}$. $\epsilon = \sqrt{\mathcal{M}^2 + \mathcal{O}^2}$.

 $\mathcal{H}' = \beta \epsilon + \mathcal{E} + \frac{1}{2T} [\![T, [T, (\beta \epsilon + Z)]]\!] \quad \mathcal{H}' = \beta \epsilon + \mathcal{E}' + \mathcal{O}', \quad \beta \mathcal{E}' = \mathcal{E}' \beta, \quad \beta \mathcal{O}' = -\mathcal{O}' \beta,$ + β [O, [O, M]] – [O, [O, Z]] $T = \sqrt{(\beta \epsilon + \beta \mathcal{M} - \mathcal{O})^2}$ - $[(\epsilon + \mathcal{M}), [(\epsilon + \mathcal{M}), \mathcal{Z}]] - [(\epsilon + \mathcal{M}), [\mathcal{M}, \mathcal{O}]]$ $\mathcal{H}_{FW} = \beta \epsilon + \mathcal{E}' + \frac{1}{4} \beta \left\{ \frac{O^2}{\epsilon} \right\}.$ $Z = \mathcal{E} - i\hbar \frac{\partial}{\partial t}$ $- \beta \{\mathcal{O}, [(\epsilon + \mathcal{M}), \mathcal{Z}]\} + \beta \{(\epsilon + \mathcal{M}), [\mathcal{O}, \mathcal{Z}]\})\frac{1}{T},$

FW for arbitrary gravitational field (Obukhov,Silenko,OT'13)

Result

$$
\mathcal{H}_{\mathrm{FW}}=\mathcal{H}_{\mathrm{FW}}^{(1)}+\mathcal{H}_{\mathrm{FW}}^{(2)}
$$

$$
\epsilon' = \sqrt{m^2 c^4 V^2 + \frac{c^2}{4} \delta^{ac} \{p_b, \mathcal{F}^b{}_a \} \{p_a, \mathcal{F}^d{}_c \}}
$$

$$
\mathcal{T} = 2\epsilon'^2 + \{\epsilon', mc^2 V\}.
$$

$$
\mathcal{M} = mc^2 V,
$$
\n
$$
\mathcal{E} = q\Phi + \frac{c}{2}(\mathbf{K} \cdot \boldsymbol{\pi} + \boldsymbol{\pi} \cdot \mathbf{K}) + \frac{\hbar c}{4} \mathbf{E} \cdot \mathbf{\Sigma},
$$
\n
$$
\mathcal{O} = \frac{c}{2}(\pi_b \mathcal{F}^b{}_a \alpha^a + \alpha^a \mathcal{F}^b{}_a \pi_b) - \frac{\hbar c}{4} \Upsilon \gamma_5,
$$
\n
$$
\mathcal{H}_{\text{FW}}^{(1)} = \beta \epsilon' + \frac{\hbar c^2}{16} \left\{ \frac{1}{\epsilon'}, (2\epsilon^{ca} \Pi_e \{p_b, \mathcal{F}^d{}_c \partial_d \mathcal{F}^b{}_a) \right\} + \Pi^a \{p_b, \mathcal{F}^b{}_a \gamma\} \right\}
$$
\n
$$
+ \frac{\hbar mc^4}{4} \epsilon^{ca} \Pi_e \left\{ \frac{1}{T}, \{p_d, \mathcal{F}^d{}_c \mathcal{F}^b{}_a \partial_b V \} \right\},
$$
\n
$$
\mathcal{H}_{\text{FW}}^{(2)} = \frac{c}{2} (K^a p_a + p_a K^a) + \frac{\hbar c}{4} \Sigma_a \Xi^a + \frac{\hbar c^2}{16} \left\{ \frac{1}{T}, \{ \Sigma_a \{p_e, \mathcal{F}^e{}_b \}, \{ p_f, \} \epsilon^{abc} \left(\frac{1}{c} \mathcal{F}^f{}_c \right) \right\}
$$
\n
$$
- \mathcal{F}^d{}_c \partial_d K^f + K^d \partial_d \mathcal{F}^f{}_c \right)
$$
\n
$$
- \frac{1}{2} \mathcal{F}^f{}_d (\delta^{db} \Xi^a - \delta^{da} \Xi^b) \right] \}
$$

Operator EOM

Polarization operator $\mathbf{n} = \beta \Sigma$

$$
\frac{d\Pi}{dt} = \frac{i}{\hbar} [\mathcal{H}_{FW}, \Pi] = \mathbf{\Omega}_{(1)} \times \Sigma + \mathbf{\Omega}_{(2)} \times \Pi.
$$

Angular velocities

$$
\Omega_{(1)}^{a} = \frac{mc^{4}}{2} \left\{ \frac{1}{\mathcal{T}}, \{ p_{e}, \epsilon^{abc} \mathcal{F}^{e}{}_{b} \mathcal{F}^{d}{}_{c} \partial_{d} V \} \right\} + \frac{c^{2}}{8} \left\{ \frac{1}{\epsilon'}, \{ p_{e}, (2\epsilon^{abc} \mathcal{F}^{d}{}_{b} \partial_{d} \mathcal{F}^{e}{}_{c} + \delta^{ab} \mathcal{F}^{e}{}_{b} Y) \} \right\},
$$

$$
\Omega_{(2)}^{a} = \frac{\hbar c^{2}}{8} \left\{ \frac{1}{\mathcal{T}}, \left\{ \{p_{e}, \mathcal{F}^{e}{}_{b}\} \left\{ p_{f}, \left[\epsilon^{abc} \left(\frac{1}{c} \dot{\mathcal{F}}^{f}{}_{c}\right.\right.\right.\right.\right. \\ \left.\left.-\mathcal{F}^{d}{}_{c} \partial_{d} K^{f} + K^{d} \partial_{d} \mathcal{F}^{f}{}_{c}\right) \right. \\ \left. - \frac{1}{2} \mathcal{F}^{f}{}_{d} (\delta^{db} \Xi^{a} - \delta^{da} \Xi^{b}) \right] \right\} \right\} + \frac{c}{2} \Xi^{a}
$$

Semi-classical limit

Average spin

$$
\frac{ds}{dt} = \mathbf{\Omega} \times \mathbf{s} = (\mathbf{\Omega}_{(1)} + \mathbf{\Omega}_{(2)}) \times \mathbf{s},
$$

$$
\Omega_{(1)}^{a} = \frac{c^{2}}{\epsilon'} \mathcal{F}^{d}{}_{c} p_{d} \left(\frac{1}{2} \Upsilon \delta^{ac} - \epsilon^{aef} V \mathcal{C}_{ef}^{c}\right)
$$

$$
+ \frac{\epsilon'}{\epsilon' + mc^{2}V} \epsilon^{abc} W^{e}{}_{\hat{b}} \partial_{e} V \Big),
$$

$$
\Omega_{(2)}^{a} = \frac{c}{2} \Xi^{a} - \frac{c^{3}}{\epsilon'(\epsilon' + mc^{2}V)} \epsilon^{abc} Q_{(bd)} \delta^{dn} \mathcal{F}^{k}{}_{n} p_{k} \mathcal{F}^{l}{}_{c} p_{l},
$$

Application to anisotropic universe (Kamenshchik,OT'16) – no suppression $\sim G M/Rc^2$

Bianchi-1 Universe

$$
ds^{2} = dt^{2} - a^{2}(t)(dx^{1})^{2} - b^{2}(t)(dx^{2})^{2} - c^{2}(t)(dx^{3})^{2}.
$$

Particular case $W_1^1 = a(t), W_2^2 = b(t), W_3^3 = c(t)$.

$$
W_{\hat{1}}^1=\frac{1}{a(t)},\ W_{\hat{2}}^2=\frac{1}{b(t)},\ W_{\hat{3}}^3=\frac{1}{c(t)}.
$$

No anholonomity $r = 0$

$$
\Omega^{\hat{1}}_{(2)} = \frac{\gamma}{\gamma+1} v_{\hat{2}} v_{\hat{3}} \left(\frac{\dot{b}}{b} - \frac{\dot{c}}{c} \right).
$$
\n
$$
Q_{\hat{1}\hat{1}} = -\frac{\dot{a}}{a}, \ Q_{\hat{2}\hat{2}} = -\frac{\dot{b}}{b}, \ Q_{\hat{3}\hat{3}} = -\frac{\dot{c}}{c}.
$$

Kasner solution

t-dependence

$$
a(t) = a_0 t^{p_1}, \ b(t) = b_0 t^{p_2}, \ c(t) = c_0 t^{p_3},
$$

$$
p_1 + p_2 + p_3 = 1, \ \ p_1^2 + p_2^2 + p_3^2 = 1.
$$

Euler-type expressions

$$
\Omega^{\hat{1}}_{(2)} = \frac{\gamma}{\gamma+1} v_{\hat{2}} v_{\hat{3}} \left(\frac{p_2 - p_3}{t} \right)
$$

Heckmann-Schucking solution

Dust admixture

$$
a(t) = a_0 t^{p_1} (t_0 + t)^{\frac{2}{3} - p_1}, \ b(t) = b_0 t^{p_2} (t_0 + t)^{\frac{2}{3} - p_2},
$$

$$
c(t) = c_0 t^{p_3} (t_0 + t)^{\frac{2}{3} - p_3}.
$$

Modification:

$$
\Omega^{\hat{1}}_{(2)} = \frac{\gamma}{\gamma+1} v_{\hat{2}} v_{\hat{3}} \frac{(p_2 - p_3)t_0}{t(t_0 + t)}
$$

$$
=\frac{\gamma}{\gamma+1}v_{\hat{2}}v_{\hat{3}}\frac{(p_2-p_3)t_0}{t^2}\left(1+o\left(\frac{t_0}{t}\right)\right)
$$

Biancki-IX Universe

Metric
$$
W_{a}^{\hat{b}} = \begin{pmatrix} -a\sin x^{3} & a\sin x^{1}\cos x^{3} & 0\\ b\cos x^{3} & b\sin x^{1}\sin x^{3} & 0\\ 0 & c\cos x^{1} & c \end{pmatrix} \quad W_{\hat{b}}^{c} = \begin{pmatrix} -\frac{1}{a}\sin x^{3} & \frac{1}{b}\cos x^{3} & 0\\ \frac{1}{a}\frac{\cos x^{3}}{\sin x^{1}} & -\frac{1}{b}\frac{\sin x^{3}}{\sin x^{1}} & 0\\ -\frac{1}{a}\frac{\cos x^{1}\cos x^{3}}{\sin x^{1}} & -\frac{1}{b}\frac{\sin x^{3}\cos x^{1}}{\sin x^{1}} & \frac{1}{c} \end{pmatrix}
$$

Anholonomity coefficients $C_{\hat{1}\hat{2}}^{\hat{3}} = \frac{c}{ab}$ + cyclic permutations -> non-zero $\gamma = 2\left(\frac{c}{ab} + \frac{b}{ac} + \frac{a}{bc}\right)$ $\Omega_{(1)}^{\hat{1}} = v^{\hat{1}} \left(\frac{c}{ab} + \frac{b}{ac} - \frac{a}{bc} \right)$

Approach to singularity

 \blacksquare Chaotic oscillations – sequence of **Kasner regimes** $p_1 = -\frac{u}{1+u+u^2}$, $p_2 = \frac{1+u}{1+u+u^2}$, $p_3 = \frac{u(1+u)}{1+u+u^2}$ If Lifshitz-Khalatnikov parameter $u > 1 -$ "epochs"

$$
p'_1 = p_2(u-1), \ p'_2 = p_1(u-1), \ p'_3 = p_3(u-1)
$$

Example 1 If
$$
u < 1 -
$$
 "eras" $p'_1 = p_1 \left(\frac{1}{u}\right), p'_2 = p_3 \left(\frac{1}{u}\right), p'_3 = p_2 \left(\frac{1}{u}\right)$

 \blacksquare Change of eras – chaotic mapping of [0,1]interval $Tx = \left\{\frac{1}{x}\right\}, x_{s+1} = \left\{\frac{1}{x_s}\right\}$

Angular velocities

- \blacksquare New epoch: $u \rightarrow -u$
- \blacksquare New era changed sign
- **Odd velocity**

New epoch New era - preserved $\Omega^{\hat{1}}_{(2)} = \frac{\gamma}{(\gamma+1)t} v_2 v_3 \cdot \frac{1-u^2}{1+u+u^2},$ $\Omega_{(2)}^{\hat{2}} = \frac{\gamma}{(\gamma+1)t} v_{\hat{1}} v_{\hat{3}} \cdot \frac{2u+u^2}{1+u+u^2},$ $\Omega_{(2)}^3 = -\frac{\gamma}{(\gamma+1)t}v_1v_2\cdot\frac{1+2u}{1+u+u^2}.$

$$
\Omega_{(1)}^{\hat{1}} \sim -v^{\hat{1}}(t)^{\left(-1 - \frac{2u}{1 + u + u^2}\right)},
$$
\n
$$
\Omega_{(1)}^{\hat{b}} \sim v^{\hat{b}}(t)^{\left(-1 - \frac{2u}{1 + u + u^2}\right)}, \quad b = 2, 3.
$$
\n
$$
\Omega_{(1)}^{\hat{2}} \sim -v^{\hat{2}}(t)^{\left(-1 - \frac{2u - 2}{1 - u + u^2}\right)},
$$
\n
$$
\Omega_{(1)}^{\hat{a}} \sim v^{\hat{a}}(t)^{\left(-1 - \frac{2u - 2}{1 - u + u^2}\right)}, \quad a = 1, 3.
$$

Possible applications

- Anisotropy (c.f. crystals) \sim magnetic field
- Spin precession + equivalence principle = helicity flip (\sim AMM effect)
- **Dirac neutrino transformed to sterile component in early** (bounced) Universe
- Angular velocity $\sim 1/t \rightarrow$ amount of decoupled ~ 1
- Possible new candidate for dark matter?!
- Other fields AFTER inflation?

Generalization of Equivalence principle

Various arguments: AGM \approx 0 separately for quarks and gluons – most clear from the lattice (LHPC/SESAM)

Recent lattice study (M. Deka et al. Phys.Rev. D91 (2015) no.1, 014505)

■ Sum of u and d for Dirac (T1) and Pauli (T2) FFs

Extended Equivalence Principle=Exact EquiPartition

- In pQCD violated
- Reason in the case of $ExEP-$ no smooth transition for zero fermion mass limit (Milton, 73)
- Conjecture (O.T., 2001 prior to lattice data) – valid in NP QCD – zero quark mass limit is safe due to chiral symmetry breaking
- **Gravityproof confinement? Nucleons do not** break even by black holes?

One more gravitational formfactor

Quadrupole

 $\langle P+q/2|T^{\mu\nu}|P-q/2\rangle = C(q^2)(g^{\mu\nu}q^2-q^{\mu}q^{\nu})+...$

- Cf vacuum matrix element cosmological constant $\langle 0|T^{\mu\nu}|0\rangle = Ag^{\mu\nu}$ $A=C(q^2)q^2$
- **Inflation** \sim **annihilation (q²>0)** ot 15
- \blacksquare How to measure experimentally \blacksquare Deeply Virtual Compton Scattering

Unphysical regions

DIS : Analytical function – $I \setminus X^B$ polynomial in if $1 \leq |X_B|$

$$
H(x_B) = -\int_{-1}^{1} dx \sum_{n=0}^{\infty} H(x) \frac{x^n}{x_B^{n+1}}
$$

- DVCS additional problem of analytical continuation of $H(x,\xi)$
- **Solved by using of** Double Distributions Radon transform

$$
H(z,\xi) = \int_{-1}^{1} dx \int_{|x|-1}^{1-|x|} dy(F(x,y) + \xi G(x,y))\delta(z - x - \xi y)
$$

Double distributions and their integration

- Slope of the integration lineskewness
- Kinematics of DIS: $\xi = 0$ ("forward") - vertical line (1)
- Kinematics of DVCS: $\xi < 1$
	- line 2
- **Line 3:** $\xi > 1$ unphysical region - required to restore DD by inverse Radon transform: tomography

$$
f(x,y) = -\frac{1}{2\pi^2} \int_0^\infty \frac{dp}{p^2} \int_0^{2\pi} d\phi |\cos\phi| (H(p/\cos\phi + x + ytg\phi, tg\phi) - H(x + ytg\phi, tg\phi)) =
$$

=
$$
-\frac{1}{2\pi^2} \int_{-\infty}^\infty \frac{dz}{z^2} \int_{-\infty}^\infty d\xi (H(z + x + y\xi, \xi) - H(x + y\xi, \xi))
$$

Crossing for DVCS and GPD

- DVCS -> hadron pair production in the collisions of real and virtual photons
- GPD -> Generalized Distribution Amplitudes
- Duality between s and t channels (Polyakov,Shuvaev, Guzey, Vanderhaeghen)

GDA -> back to unphysical regions for DIS and DVCS

Recall DIS

$$
H(x_B) = -\int_{-1}^{1} dx \sum_{n=0}^{\infty} H(x) \frac{x^n}{x_B^{n+1}}
$$

Non-positive powers of $\overset{\circ}{x_{\scriptscriptstyle{B}}}$

$$
H(\xi) = -\int_{-1}^{1} dx \sum_{n=0}^{\infty} H(x,\xi) \frac{x^n}{\xi^{n+1}}
$$

DVCS

- Polynomiality (general property of Radon transforms): moments integrals in x weighted with x^n - are polynomials in 1/ of power $n+1$ $\int_{-1}^{1} dx \sum_{n=0}^{\infty} H(x) \frac{x^n}{x_B^{n+1}}$ $H(\xi) = -\int_{-1}^{1} dx \sum_{n=0}^{\infty} H(x, \xi)$

Polynomiality (generally powers

Positive powers
 x_B
 x_B

Polynomiality (generally contransity): moment

integrals in x weights
 x^n - are
	- **As a result, analyticity is** preserved: only non-positive
powers of ξ appear

Holographic property (OT'05) **Factorization**

- $\mathcal{H}(\xi) = \int_{-1}^{1} dx \frac{H(x,\xi)}{x-\xi + i\epsilon}$
- F ormula \rightarrow Analyticity -> Imaginary part -> Dispersion relation:

$$
\mathcal{H}(\xi) = \int_{-1}^{1} dx \frac{H(x, x)}{x - \xi + i\epsilon}
$$

$$
\Delta \mathcal{H}(\xi) \equiv \int_{-1}^{1} dx \frac{H(x, x) - H(x, \xi)}{x - \xi + i\epsilon}
$$

 "Holographic" equation

$$
= \sum_{n=1}^{\infty} \frac{1}{n!} \frac{\partial^n}{\partial \xi^n} \int_{-1}^1 H(x,\xi) dx (x - \xi)^{n-1} = const
$$

Holographic property - II

Directly follows from double distributions

$$
H(z,\xi) = \int_{-1}^{1} dx \int_{|x|-1}^{1-|x|} dy (F(x,y) + \xi G(x,y)) \delta(z - x - \xi y)
$$

Constant is the SUBTRACTION one - due to the (generalized) Polyakov-Weiss term G(x,y)

$$
\Delta \mathcal{H}(\xi) = \int_{-1}^{1} dx \int_{|x|-1}^{1-|x|} dy \frac{G(x, y)}{1 - y}
$$

=
$$
\int_{-\xi}^{\xi} dx \frac{D(x/\xi)}{x - \xi + i\epsilon} = \int_{-1}^{1} dz \frac{D(z)}{z - 1} = const
$$

Analyticity of Compton amplitudes in energy plane (Anikin,OT'07)

- **Finite subtraction implied** $\Delta = 2 \int_{-1}^{1} d\beta \frac{D(\beta)}{\beta - 1}$ Re $\mathcal{A}(\nu, Q^2) = \frac{\nu^2}{\pi} P \int_{\nu_0}^{\infty} \frac{d\nu'^2}{\nu'^2} \frac{\text{Im} \mathcal{A}(\nu', Q^2)}{(\nu'^2 - \nu^2)} + \Delta$ $\Delta_{\text{COM}}^p(2) = \Delta_{\text{COM}}^n(2) \approx 4.4, \qquad \Delta_{\text{latt}}^p \approx \Delta_{\text{latt}}^n \approx 1.1$
	- **Numerically close to Thomson term for real proton** (but NOT neutron) Compton Scattering!

Duality (sum of squares vs square of sum; proton: $4/9+4/9+1/9=1$?!

From D-term to pressure

- Inverse $-$ 1st moment (model)
- Kinematical factor moment of pressure $C \sim < p r^4 > (= 0)$ M.Polyakov'03

$$
T_{\mu\nu}^Q(\vec{r},\vec{s}) = \frac{1}{2E} \int \frac{d^3\Delta}{(2\pi)^3} e^{i\vec{r}\cdot\vec{\Delta}} \langle p',S' | \hat{T}_{\mu\nu}^Q(0) | p,S \rangle
$$

$$
T_{ij}(\vec{r}) = s(r) \left(\frac{r_i r_j}{r^2} - \frac{1}{3} \delta_{ij}\right) + p(r) \delta_{ij}
$$

■ Stable equilibrium C>0:

- Jlab, TJNAF, CEBAF
- **Very accurate data**
- **Imaginary part from Single Spin** Asymmetry

The pressure distribution inside the proton

V. D. Burkert^{1*}, L. Elouadrhiri¹ & F. X. Girod¹

LETTER

Largest ever $({\sim}\Lambda^4_{\rm QCD})$ \sim 10³⁵ pascals **Cosmological** constant " natural" scale

Details of coordinate dependence

- **Follows from t-dependence**
- **No term without quadrupole structure** (balance of quarks and gluons separate

– to be checked!)

Stability

- **All the known cases (hadrons, Q-balls)** Schweitzer e.a.
	- stable objects

Photon (but no rest frame!): C \sim In2 Gabdrakhmanov, OT '12

■ Calculable

 1.0

Pressure of quarks in photon

Holographic sum rule

$$
\int_{-1}^{1} \frac{H_1(x,\xi) - H_1(x,x)}{x - \xi} dx = 2 \ln 2
$$

\blacksquare Positive sign – stability

Pressure – requires t-dependence (Gabrakhmanov,OT, in progress)

Some further development

- \blacksquare Not pressure of photons gas (=e/3)
- **Pressure of quarks in photon (at rest?!**slightly virtual)
- 2d integration –pressure of moving particle – contact with HIC
- EOS expressed via GPDs
- Viscosity T-odd GPDs (Polyakov, OT, in progress)

Pions

\blacksquare No target – but crossed channel

■ Gravitational FFs and radii – GDAs from BELLE data Kumano, Song, OT'17

$$
\langle \pi^a(p') | T_q^{\mu\nu}(0) | \pi^b(p) \rangle
$$

= $\frac{\delta^{ab}}{2} [(t g^{\mu\nu} - q^{\mu} q^{\nu}) \Theta_{1,q}(t) + P^{\mu} P^{\nu} \Theta_{2,q}(t)]$

$$
\langle \pi^a(p) \pi^b(p') | T_q^{\mu\nu}(0) | 0 \rangle
$$

= $\frac{\delta^{ab}}{2} [(s g^{\mu\nu} - P^{\mu} P^{\nu}) \Theta_{1,q}(s) + \Delta^{\mu} \Delta^{\nu} \Theta_{2,q}(s)]$

Pressure distribution may be extracted from W dependence (in progress)

To be done

- **Weighted (with quark charge squared)** pressure measured – flavor separation
- Gluons: are quarks and gluons stable separately or together (terms \sim g μ ^x)
- Scale dependence?
- Errors?

CONCLUSIONS

- Gravitational formfactors $-$ extra probe of hadron structure
- \blacksquare Way to pressure universality at all scales
- **Similarity to stable macroscopic objects** in all known cases
- \blacksquare Transition to HIC similarity to hadronic physics (c.f. "Ridge")

Measurement of Wigner (GTMD) function

Small $x - lp$ (Hatta,Xiao,Yuan'16) or Ap UP (Hagiwara, Hatta, Pasechnik, Tasevsky, OT'17) collisions

Complementary description of elliptic flow – another interplay of hadronic/HIC