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Outline

• TOTEM: LHC experiment dedicated to measurement of:
total cross-section

an
yt
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ng

elastic scattering single diffraction double diffraction

...

• TOTEM + CMS: first collaboration of experiments at IP5
◦ excellent pseudorapidity coverage: optimal for
e.g. central exclusive diffraction
◦ low pile-up conditions⇒ clean signal
◦ cooperation mode: independent experiments,
exchange of triggers, data merged offline

p

p

p → RP

p → RP

X → (CMS)

• PPS (Precision Proton Spectrometer)
◦ (upgraded) forward-proton taggers fully integrated under CMS
◦ high luminosity conditions⇒ low cross-section processes (high mass, etc.)
• common features: rapidity gaps, particles in very forward region, surviving
protons⇒ special detectors
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Detector apparatus of TOTEM

• Inelastic telescopes T1 and T2: charged particles from inelastic collisions

T1 T2

CMS

9m

13.5m

• T1: 3.1 < |η| < 4.7,
pT > 100MeV

• T2: 5.3 < |η| < 6.5,
pT > 40MeV

• Roman Pots (RP): elastic and diffractive protons close to outgoing beam
RP RPRP

◦ station at 147m in Run I→ station 210m in Run II

• all detectors: symmetric about IP5, trigger capable, radiation tolerant
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Roman Pots (RPs)

• stations installed at ±220 m in the outgoing LHC beam-pipe
• each station has two units, separated by ≈ 5 m

horizontal RP BPM

top RP

bottom RP

• each unit contains 3 Roman Pots: top, bottom and horizontal
• Roman Pot = movable beam-pipe insertion
◦ beam unstable⇒ RPs retracted to safe position
◦ beam stable⇒ RPs as close to beam as reasonable

• typical approach: 10 σbeam (record 3 σbeam)

• Roman Pot: container for sensors
• LS1: improved RF shield ⇒ possible close approach to high-
intensity beam
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“Edgeless” silicon sensors

• each RP contains a package of 10 silicon sensors
• 5 pairs of back-to-back mounted strip sensors

VFAT chips

cut edge

st
rip

 d
ire

ct
io
n

• custom developed “edgeless” sensors
⇒ insensitive edge ≈ 50 µm (standard about 1 mm)

• single-sided p+-n
• 512 strips at pitch of 66 µm, at 45 ◦ wrt. cut edge
• operated at ≈ −20 ◦C, bias voltage ≈ 100 V
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Proton measurement with RPs

• proton transport: described as in linear optics

IP
s ≡ beam axis

x

LHC magnet lattice⇒ accelerator optics RP station

p∗
p

x∗ ϑ∗x
xN

xFϑx




x

θx

y

θy

ξ



RP

=




vx Lx · · Dx

· · · · ·
vy Ly · · Dy

· · · · ·
· · · · 1




︸ ︷︷ ︸
product from all lattice elements




x∗

θ∗x
y∗

θ∗y
ξ



IP

θ∗x, θ∗y: scattering angles
x∗, y∗: vertex
ξ = ∆p/p: momentum loss

optical functions:
effective length L
magnification v
dispersion D

• proton reconstruction: inverted transport RPs −→ IP
◦ optical parameters functions of ξ⇒ reconstruction is non-linear problem
◦ good knowledge of optics is crucial
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LHC optics

• simulation of central diffraction for 2 different optics
low β∗ (LHC standard)

Lx ≈ 1.7 m, Ly ≈ 14 m, Dx ≈ 8 cm
diffractive protons in horizontal RPs

β∗ = 90 m (special for TOTEM)
Lx ≈ 0, Ly ≈ 260 m, Dx ≈ 4 cm

diffractive protons in vertical RPs

• optics typically “labelled” by β∗ ≡ betatron function at IP

◦ beam width:
√
εβ, ε: beam emittance

◦ beam angular divergence:
√
ε/β

◦ luminosity ∝ (beam width at IP)−2 ∝ 1/β∗
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Typical run scenarios

t ≈ −p2θ2: four-momentum transfer squared
ξ = ∆p/p: fractional momentum loss
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β∗ = 0.55 m
L ≈ 1033 cm−2s−1

elastic scattering: high |t|

diffraction: ξ & 0.03, low
cross-section processes

medium β∗ = 90 m
L ≈ 1028 cm−2s−1

elastic scattering: low to mid
|t|

diffraction: any ξ for
|t| & 0.01 GeV2

high β∗ = 1535 m
L ≈ 1027 cm−2s−1

elastic scattering: very low |t|
(Coulomb-nuclear
interference)

details depend on RP approach to beam and precise optics
J. Kašpar Division Seminar at Institute of Physics, ASCR, Prague 31 May 2018 8



TOTEM

list of TOTEM publications
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Elastic scattering

• p+ p→ p+ p, forward protons measured by RPs
• strong selection: two anti-collinear protons from the same vertex
• results overview (selection):
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√
s = 2.76 TeV (arbitrary normalisation)

β∗ = 11 m, PRELIMINARY!√
s = 7 TeV

β∗ = 3.5 m
β∗ = 90 m√

s = 8 TeV (scaled 10×)
β∗ = 90 m, PRELIMINARY!
β∗ = 90 m
β∗ = 1000 m√

s = 13 TeV (scaled 1000×)
β∗ = 90 m, PRELIMINARY!
(arbitrary normalisation)
β∗ = 2500 m

elastic-scattering measurements by TOTEM

• different |t| probe different physics regimes – from lowest to highest |t|:
◦ Coulomb interference: phase determination
◦ diffractive cone: non-perturbative, Pomeron
◦ dip-bump: amplitude interference, Odderon effects
◦ transition to perturbative QCD
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Elastic scattering

• √s = 13 TeV:
model predictions:
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Petrov et al. (3P)

√
s = 13 TeV

oscillations in almost each model

• high-|t|: no structures!
◦ rules out many models
◦ rules out physics mechanism: “optical” models
◦ physics interpretation: transition between diffraction
and pQCD? ⇒ e.g. Donnachie-Landshoff⇒
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Total cross-section

• 3 methods to determine total cross-section

σtot

elastic observables only:

σ2
tot =

16π

1 + $2
1
L

dNel
dt

∣∣∣∣
0

$-independent:

σtot =
1
L (Nel + Ninel)

luminosity-independent:

σtot =
16π

1 + $2
dNel/dt|0
Nel + Ninel

• inelastic cross-section: event counting with T2 (and T1)
◦ 95 % of inelastic events have at least 1 track in the T2 region
◦ only one significant MC correction: contribution from low mass diffraction
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Cross-section results
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σtot fits by COMPETE
(pre-LHC model RRPnfL2u)
σel fit by TOTEM
(11.84 − 1.617 ln s + 0.1359 ln2 s)

• √s = 7 TeV: all 3 methods consistent
• energy dependence: in general compatible with ln2(s) at high energies
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Theory motivation for rho measurement

• scattering at high energy and low |t| ⇒ gluon dominated regime
• Pomeron: standard exchange, 2 mutually interacting gluons
◦ amplitude crossing even = same for pp and pp
◦ Ael(t = 0) ∼ imaginary

• Odderon: (so far) hypothetical exchange, 3 mutually interact-
ing gluons
◦ amplitude crossing odd = opposite sign for pp and pp
◦ Ael(t = 0) ∼ real
• solid theoretical basis: axiomatic field theory, Regge theory, perturbative and
(semi-)non-perturbative QCD, lattice QCD, AdS/CFT
• (generalised) Pomeranchuk theorem:

σ
pp
tot/σ

pp
tot → 1 for s→∞

◦ allows for pp vs. pp difference non vanishing at high energies
• ρ parameter

ρ = <Ael=Ael

∣∣∣∣
t=0

◦ sensitivity to Pomeron/Odderon ratio
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ρ determination principle

• interactions responsible for proton-proton elastic scattering:
◦ electromagnetic (“Coulomb”): very low |t|
◦ strong (“nuclear”): higher |t|
◦ at 13 TeV, contributions of similar size at |t| ≈ 6 · 10−4 GeV2
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hadronic
Coulomb
Coulomb ⊕ hadronic

MC simulation,
√

s = 13 TeV

– sizeable interference effect⇒ can determine nuclear phase wrt. Coulomb
phase (known from QED)
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Coulomb-nuclear interference

• observed cross-section

dσ
dt ∝

∣∣∣∣∣∣∣∣∣∣∣∣

+ · · ·

︸ ︷︷ ︸
Coulomb
amplitude

+ AN

︸ ︷︷ ︸
nuclear
amplitude

+ AN + · · ·

︸ ︷︷ ︸
“mixed”
terms

∣∣∣∣∣∣∣∣∣∣∣∣

2

• our modelling
◦ “interference formula” = summation for practical applications
– considered: West-Yennie, Cahn and Kundrát-Lokajíček
◦ Coulomb amplitude: QED + experimental form factors

◦ modulus of AN: empirical guidance⇒ at low |t|: a exp
(

Nb∑
n=1

bnt
n

)

◦ phase of AN
– different assumptions⇒ different behaviour in b space
– assume slow variation with |t| ⇒ fair comparison with pre-LHC data
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Effect of ρ on differential cross-section

• simulation (with realistic nuclear component):
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ρ measurement : Comparison to previous measurements
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⇒ 13 TeV measurement significantly lower than extrapolations

(more than 4 σ effect)
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Comparison to COMPETE
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RR(PL2) (20), RR(PL2)qc (18)

• comprehensive study of pre-LHC data by COMPETE
◦ 256 models considered to describe σtot and ρ data in pp, pπ, pK, ...
– various assumptions on energy dependence, reaction dependence
– asymptotic component: only crossing-even
◦ 23 models (shown above) found to give reasonable description
– predictions cluster in 3 bands

• red: selection of TOTEM measurements
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Dispersion relations
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• simple version of derivative dispersion relation for crossing-even amplitude

ρ ≈ π

2σtot
dσtot
d ln s

◦ faster σtot rise⇒ higher value of ρ
◦ TOTEM data show the opposite⇒model-independent argument for crossing-

odd component
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Models compatible with TOTEM data
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ref. TOTEM meas.

• Nicolescu et al. (updated version of original model)
◦ crossing-odd effect: strong energy dependence, increase with energy
◦ TOTEM’s ρmeasurement at

√
s = 13 TeV correctly predicted long before LHC

◦ considered as first experimental evidence for “Odderon”
• Durham group (model enhanced with crossing-odd contribution)
◦ crossing-odd effect: mild energy dependence, decrease with energy

⇒ crossing-odd component needed to describe data
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Indications for crossing-odd contribution at t 6= 0

• dip: crossing-even contribution suppressed→ crossing-odd effect significant
◦ prediction: pp shallow while pp pronounced dip
• low energy (ISR, 53 GeV):
◦ secondary (mesonic) reggeons
complicate interpretation

• high energy: gluon-dominated regime, secondary reggeons negligible
◦ left: pp, other: pp (unique!) LHC measurements by TOTEM
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TOTEM + CMS



Physics motivation

• exclusive central diffraction
p

p

p → RP: ξ1

X → CMS: MX =
√

ξ1ξ2s, yX = 1
2 ln ξ1

ξ2

p → RP: ξ2

◦ exchange of colour singlets with vacuum quantum numbers ⇒ selection
rules for system X: JPC = 0++,2++
◦ kinematics matching RP vs. CMS (MX, yX, vertex)⇒ strong background sup-
pression
◦ low MX (few GeV)⇒ x ∼ 10−4⇒ probing gluon content of proton⇒ optimal
for glueball searches via mass spectroscopy

• other processes of interest (non-exhaustive)
◦ SD + jet-gap-jet: BFKL effects
◦ SD + di-jet, SD + jet + γ: Pomeron structure functions
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Glueball searches

• glueball = hypothetical particle composed solely of gluons (no valence quarks)
◦ features: charge neutral, no coupling to photons, flavour symmetry in decays
◦ in experimental reach (due to selection rules): scalar and tensor

• tensor glueball: theory
◦ lattice QCD predictions – narrow state
◦ SU(3)f decay modes – equi-flavour ?
– raw: ππ – KK : ηη : ηη′ : η′η′ =
ρρ : K∗K∗ : ωω : ωφ : φφ = 3 : 4 : 1 : 0 : 1

– with phase space correction
ρρ : K∗K∗ : ωω : φφ = 1 : 0.84 : 0.32 : 0.11

◦ qq mesons: branching ratios different
– depend on quark flavour

• tensor glueball: experiment
◦ previous studies (searched for decades): MARK3, BES, CLEO, PANDA, ...
◦ only not-yet excluded candidate: fJ(2220)
– already shown: flavour symmetry in 2-particle decays, no γγ decays
– decays to vector mesons not yet observed⇒ decisive glueball signature
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Data and analysis

• tensor glueball: CMS + TOTEM
◦ sensitivity only to charged decays→ ρρ : K∗K∗ : φφ = 0.33 : 0.10 : 0.03
◦ CMS mass resolution: about 25 MeV

• 2015 data (13 TeV, 0.4 pb−1)
◦ β∗ = 90 m⇒ low ξ available, low pile-up (µ ≈ 0.1)
◦ CMS and TOTEM: separate DAQ, trigger exchange
– trigger: RP double arm, T2 veto, 5 pixel clusters
– offline event merging
◦ CMS: optimised low pT track reconstruction

• analysis strategy
◦ final states of interest: ρρ→ ππππ, φφ→ KKKK and K∗K∗ → ππKK
◦ per-pair mass compatible with vector meson hypothesis
◦ effect in mass spectrum: excess or deficit (depending on phases)
◦ analysis of azimuthal-angle distribution⇒ spin, parity
• publication in CMS review
• new run in few weeks, goal: higher statistics (profit from timing detectors)
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Precision Proton Spectrometer



Physics motivation

• anomalous photon couplings

• anomalous gauge couplings

• anomalous di-lepton

• resonance production

• missing mass

• QCD studies

(model independent studies)
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Detector upgrade

• conditions
◦ high mass, low cross-sections → need low β∗ and long integration times →
standard LHC fills
◦ high pile-up (up to µ ≈ 50), high track multiplicity, high radiation dose

• tracking RPs: pixels sensors
◦ 3D technology: radiation hardness
◦ pixel size 100 x 150 µm: tracking efficiency
◦ insensitive edge 200 µm: little acceptance loss

• timing RPs: diamond sensors
◦ 2018: 1 RP per arm
– 2 planes of (single) diamond, resolution ≈ 100 ps
– 2 planes of double diamond, resolution ≈ 50 ps
◦ plan to use 2 timing RPs with double diamonds
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History and luminosity collected

• 2016: Lint = 15 pb−1
◦ “accelerated”: “750 GeV excess” reported by ATLAS and CMS
◦ tracking: strips (TOTEM)
◦ timing: none

• 2017: Lint = 40 pb−1
◦ tracking: strips and pixels
◦ timing: diamond + UFSD

• 2018: Lint > 10 pb−1
◦ tracking: pixels
◦ timing: diamond + double diamonds
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Calibration

• alignment
◦ special calibration fill
– beam based alignment: as for LHC collimators
– relative alignment: track-hit residual
minimisation

– alignment wrt. beam: symmetry of elastic
scattering

◦ for each physics fill
– hit distributions match to calibration fill

• optics
◦ special calibration fill
◦ leading approximation

x ≈ Dxξ , y ≈ Ly(ξ) θ∗y
◦ for ξ = ξ0: Ly = 0⇒ “pinch” in hit distributions
◦ Dx estimated as x0/ξ0
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2016 data analyses

• 2016: no timing RPs→ background suppressed by matching CMS and RPs
p

p

p → RP: ξ1

X → CMS: MX =
√

ξ1ξ2s, yX = 1
2 ln ξ1

ξ2

p → RP: ξ2

◦ typical remaining background: pile-up of unrelated central activity and for-
ward protons (mainly SD)

• acceptance:
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Di-lepton analysis of 2016 data

• γγ → l+l−, lepton l: µ or e
• known (QED) physics ⇒ verification of the full chain: DAQ, reconstruction,
alignment, optics, ...
• 2016 pre-TS2, 9.4/fb
• to enhance statistics: only single proton tag required
◦ signal processes: left
◦ main backgrounds: right

• central selection
◦ pT(l) > 50 GeV, m(ll) > 110 GeV to avoid Z peak
◦ ll vertex separation
◦ ll acoplanarity (back-to-back)
• RP – central matching within 2 σ
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Di-lepton analysis of 2016 data

• data-driven background estimate
◦ µµ: 1.5± 0.5 events
◦ ee: 2.36± 0.5 events
• matching events observed
◦ µµ: 12
◦ ee: 8

• ⇒ PPS works as desired
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Di-photon analysis

• di-photon production

◦ high masses (> 200 GeV): γγ → γγ dominant
◦ SM: no direct γγγγ coupling⇒ sensitivity to anomalous couplings
• proto-analysis
◦ ζ1,2: 2 different levels of anomalous quartic coupling

◦ after cuts: background negligible
• analysis of 2016 data: publication in preparation
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Summary

• TOTEM
◦ recent results on σtot and ρ

– rule out most of the pre-LHC models
– indicate existence of an Odderon, crossing-odd amplitude at high energies
◦ Odderon hypothesis independently supported by pp and pp data in the dip
region

• CMS + TOTEM
◦ low-mass spectroscopy: important contribution to glueball searches

• PPS
◦ rich extension to the LHC physics programme
◦ di-lepton analysis: PPS works as designed
◦ di-photon and other analyses in progress
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