Forward physics at LHC with TOTEM and CMS

Jan Kašpar

Outline

- TOTEM: LHC experiment dedicated to measurement of: total cross-section elastic scattering single diffraction double diffraction
- TOTEM + CMS: first collaboration of experiments at IP5
 - excellent pseudorapidity coverage: optimal for e.g. central exclusive diffraction
 - $\circ~$ low pile-up conditions \Rightarrow clean signal
 - cooperation mode: independent experiments, exchange of triggers, data merged offline

- PPS (Precision Proton Spectrometer)
 - $\circ\,$ (upgraded) forward-proton taggers fully integrated under CMS
 - $\circ~$ high luminosity conditions \Rightarrow low cross-section processes (high mass, etc.)
- common features: rapidity gaps, particles in very forward region, surviving protons \Rightarrow special detectors

Inelastic telescopes T1 and T2: charged particles from inelastic collisions

• Roman Pots (RP): elastic and diffractive protons close to outgoing beam

 $\circ~$ station at 147m in Run I \rightarrow station 210m in Run II

• all detectors: symmetric about IP5, trigger capable, radiation tolerant

J. Kašpar

- stations installed at \pm 220 m in the outgoing LHC beam-pipe
- each station has two units, separated by $\approx 5~\text{m}$

- each unit contains 3 Roman Pots: top, bottom and horizontal
- Roman Pot = movable beam-pipe insertion
 - beam unstable \Rightarrow RPs retracted to safe position
 - $\circ~$ beam stable \Rightarrow RPs as close to beam as reasonable
- typical approach: 10 σ_{beam} (record 3 σ_{beam})
- Roman Pot: container for sensors
- + LS1: improved RF shield \Rightarrow possible close approach to high-intensity beam

"Edgeless" silicon sensors

- each RP contains a package of 10 silicon sensors
- 5 pairs of back-to-back mounted strip sensors

- custom developed "edgeless" sensors \Rightarrow insensitive edge \approx 50 μ m (standard about 1 mm)
- single-sided p⁺-n
- 512 strips at pitch of 66 μ m, at 45 $^\circ$ wrt. cut edge
- operated at ≈ -20 °C, bias voltage ≈ 100 V

• proton transport: described as in linear optics

- proton reconstruction: inverted transport RPs → IP
 - $\circ~$ optical parameters functions of $\xi \Rightarrow$ reconstruction is non-linear problem
 - good knowledge of optics is crucial

LHC optics

simulation of central diffraction for 2 different optics

low β^* (LHC standard)

 $L_X \approx 1.7$ m, $L_V \approx 14$ m, $D_X \approx 8$ cm $L_X \approx 0$, $L_V \approx 260$ m, $D_X \approx 4$ cm diffractive protons in *horizontal RPs*

$\beta^* = 90 \text{ m}$ (special for TOTEM)

diffractive protons in vertical RPs

- optics typically "labelled" by $\beta^* \equiv betatron function at IP$
 - beam width: $\sqrt{\epsilon\beta}$, ϵ : beam emittance
 - beam angular divergence: $\sqrt{\epsilon/\beta}$
 - luminosity \propto (beam width at IP)⁻² \propto 1/ β^*

Typical run scenarios

 $t \approx -p^2 \theta^2$: four-momentum transfer squared $\xi = \Delta p/p$: fractional momentum loss

J. Kašpar

TOTEM

list of TOTEM publications

- $p + p \rightarrow p + p$, forward protons measured by RPs
- strong selection: two anti-collinear protons from the same vertex

• different |t| probe different physics regimes – from lowest to highest |t|:

- Coulomb interference: phase determination
- diffractive cone: non-perturbative, Pomeron
- dip-bump: amplitude interference, Odderon effects
- transition to perturbative QCD

J. Kašpar

Elastic scattering

• $\sqrt{s} = 13$ TeV:

- *high-*|*t*|: *no structures*!
 - rules out many models
 - rules out physics mechanism: "optical" models
 - $\circ\,$ physics interpretation: transition between diffraction and pQCD? $\Rightarrow\,$ e.g. Donnachie-Landshoff $\Rightarrow\,$

• 3 methods to determine *total cross-section elastic observables only:*

- *inelastic cross-section*: event counting with T2 (and T1)
 - \circ 95 % of inelastic events have at least 1 track in the T2 region
 - o only one significant MC correction: contribution from low mass diffraction

J. Kašpar

Cross-section results

• $\sqrt{s} = 7$ TeV: all 3 methods consistent

• energy dependence: in general compatible with $\ln^2(s)$ at high energies

J. Kašpar

- scattering at high energy and low $|t| \Rightarrow$ gluon dominated regime
- Pomeron: standard exchange, 2 mutually interacting gluons
 o amplitude crossing even = same for pp and pp

 A_{el}(t = 0) ~ imaginary
- Odderon: (so far) hypothetical exchange, 3 mutually interacting gluons

 $\circ\,$ amplitude crossing odd = opposite sign for pp and pp \overline{p}

 $\circ \mathcal{A}_{el}(t = 0) \sim real$

- solid theoretical basis: axiomatic field theory, Regge theory, perturbative and (semi-)non-perturbative QCD, lattice QCD, AdS/CFT
- (generalised) Pomeranchuk theorem:

$$\sigma^{
m pp}_{
m tot}/\sigma^{
m p\overline{p}}_{
m tot}
ightarrow 1 ~~{
m for}~s
ightarrow\infty$$

 $\circ\,$ allows for pp vs. $p\overline{p}$ difference non vanishing at high energies

ρ parameter

$$o = \frac{\Re \mathcal{A}_{\text{el}}}{\Im \mathcal{A}_{\text{el}}} \Big|_{t=0}$$

sensitivity to Pomeron/Odderon ratio

J. Kašpar

- interactions responsible for proton-proton elastic scattering:
 - \circ electromagnetic ("Coulomb"): very low |t|
 - \circ *strong* ("nuclear"): higher |t|
 - $\circ\,$ at 13 TeV, contributions of similar size at $|t|pprox 6\cdot 10^{-4}~{
 m GeV^2}$

 sizeable interference effect ⇒ can determine nuclear phase wrt. Coulomb phase (known from QED)

J. Kašpar

observed cross-section

- our modelling
 - "interference formula" = summation for practical applications
 - considered: West-Yennie, Cahn and Kundrát-Lokajíček
 - Coulomb amplitude: QED + experimental form factors
 - modulus of \mathcal{A}^{N} : empirical guidance \Rightarrow at low |t|: $a \exp\left(\sum_{i=1}^{\mathsf{N}} \frac{1}{2}\right)$

$$\sum_{n=1}^{N_b} b_n t^n$$

- $\circ~\textit{phase}~\textit{of}~\mathcal{A}^N$
 - different assumptions \Rightarrow different behaviour in *b* space
 - assume slow variation with $|t| \Rightarrow$ fair comparison with pre-LHC data

J. Kašpar

• simulation (with realistic nuclear component):

• TOTEM data, $\sqrt{s} = 13 \text{ TeV}$, $\beta^* = 2500 \text{ m}$:

Division Seminar at Institute of Physics, ASCR, Prague

0.02

ρ measurement : *Comparison to previous measurements*

 \Rightarrow 13 TeV measurement significantly lower than extrapolations (more than 4 σ effect)

Comparison to COMPETE

- comprehensive study of pre-LHC data by COMPETE
 - $\,\circ\,$ 256 models considered to describe $\sigma_{\rm tot}$ and ρ data in pp, p\pi, pK, ...
 - various assumptions on energy dependence, reaction dependence
 - asymptotic component: *only crossing-even*
 - \circ 23 models (shown above) found to give reasonable description
 - predictions cluster in 3 bands

• red: selection of TOTEM measurements

Dispersion relations

• simple version of derivative dispersion relation for crossing-even amplitude

$$ho pprox rac{\pi}{2\sigma_{
m tot}} rac{{
m d}\sigma_{
m tot}}{{
m d}\ln s}$$

- \circ faster $\sigma_{
 m tot}$ rise \Rightarrow higher value of ho
- TOTEM data show the opposite ⇒ model-independent argument for crossingodd component

Models compatible with TOTEM data

- Nicolescu et al. (updated version of original model)
 - crossing-odd effect: strong energy dependence, increase with energy
 - TOTEM's ρ measurement at \sqrt{s} = 13 TeV correctly predicted long before LHC
 - o considered as first experimental evidence for "Odderon"
- Durham group (model enhanced with crossing-odd contribution)
 o crossing-odd effect: mild energy dependence, decrease with energy

\Rightarrow crossing-odd component needed to describe data

Indications for crossing-odd contribution at $t \neq 0$

- dip: crossing-even contribution suppressed \rightarrow crossing-odd effect significant $\circ\,$ prediction: $p\overline{p}$ shallow while pp pronounced dip
- low energy (ISR, 53 GeV):
 - secondary (mesonic) reggeons complicate interpretation

high energy: gluon-dominated regime, secondary reggeons negligible
 o left: pp, other: pp (unique!) LHC measurements by TOTEM

TOTEM + CMS

exclusive central diffraction

- exchange of colour singlets with vacuum quantum numbers \Rightarrow selection rules for system X: $J^{PC} = 0^{++}, 2^{++}$
- ∘ kinematics matching RP vs. CMS (M_X , y_X , vertex) ⇒ strong background suppression
- ∘ low M_X (few GeV) ⇒ $x \sim 10^{-4}$ ⇒ probing gluon content of proton ⇒ optimal for glueball searches via mass spectroscopy

other processes of interest (non-exhaustive)

- SD + jet-gap-jet: BFKL effects
- \circ SD + di-jet, SD + jet + γ : Pomeron structure functions

Glueball searches

- glueball = hypothetical particle composed solely of gluons (no valence quarks)
 - $\circ~$ features: charge neutral, no coupling to photons, flavour symmetry in decays
 - $\circ\,$ in experimental reach (due to selection rules): scalar and tensor
- tensor glueball: theory
 - lattice QCD predictions narrow state
 - SU(3)_f decay modes equi-flavour ?
 - raw: $\pi\pi K\overline{K} : \eta\eta : \eta\eta' : \eta'\eta' =$
 - $\rho\rho: \mathsf{K}^*\overline{\mathsf{K}}^*: \omega\omega: \omega\varphi: \varphi\varphi = 3:4:1:0:1$
 - with phase space correction

$$\rho\rho:\mathsf{K}^*\overline{\mathsf{K}}^*:\omega\omega:\varphi\varphi=1:0.84:0.32:0.11$$

- $\circ~q\overline{q}$ mesons: branching ratios different
 - depend on quark flavour
- tensor glueball: experiment
 - $\circ\,$ previous studies (searched for decades): MARK3, BES, CLEO, PANDA, ...
 - only not-yet excluded candidate: fJ(2220)
 - already shown: flavour symmetry in 2-particle decays, no $\gamma\gamma$ decays
 - decays to vector mesons not yet observed \Rightarrow decisive glueball signature

J. Kašpar

- tensor glueball: CMS + TOTEM
 - \circ sensitivity only to charged decays $\rightarrow \rho \rho$: K* \overline{K}^* : $\varphi \phi$ = 0.33 : 0.10 : 0.03
 - CMS mass resolution: about 25 MeV
- 2015 data (13 TeV, 0.4 pb⁻¹)
 - $\circ~eta^*$ = 90 m \Rightarrow low ξ available, low pile-up ($\mu pprox$ 0.1)
 - $\circ\,$ CMS and TOTEM: separate DAQ, trigger exchange
 - trigger: RP double arm, T2 veto, 5 pixel clusters
 - offline event merging
 - CMS: optimised low p_T track reconstruction

analysis strategy

- \circ final states of interest: $ho
 ho o \pi\pi\pi\pi$, $ho\phi o ext{KKK}$ and $ext{K}^* o \pi\pi ext{KK}$
- $\circ\,$ per-pair mass compatible with vector meson hypothesis
- effect in mass spectrum: excess or deficit (depending on phases)
- $\circ\,$ analysis of azimuthal-angle distribution \Rightarrow spin, parity
- publication in CMS review

• new run in few weeks, goal: higher statistics (profit from timing detectors)

J. Kašpar

Precision Proton Spectrometer

Physics motivation

conditions

- $\circ\,$ high mass, low cross-sections \rightarrow need low β^* and long integration times $\rightarrow\,$ standard LHC fills
- $\circ\,$ high pile-up (up to \mupprox 50), high track multiplicity, high radiation dose

tracking RPs: pixels sensors

- $\circ~$ 3D technology: radiation hardness
- \circ pixel size 100 x 150 μ m: tracking efficiency
- \circ insensitive edge 200 μ m: little acceptance loss
- timing RPs: diamond sensors
 - 2018: 1 RP per arm
 - 2 planes of (single) diamond, resolution \approx 100 ps
 - 2 planes of double diamond, resolution \approx 50 ps
 - $\circ~$ plan to use 2 timing RPs with double diamonds

- 2016: $\mathcal{L}_{int} = 15 \text{ pb}^{-1}$
 - $\circ\,$ "accelerated": "750 GeV excess" reported by ATLAS and CMS
 - tracking: strips (TOTEM)
 - \circ timing: none

• 2017: $\mathcal{L}_{int} = 40 \text{ pb}^{-1}$

tracking: strips and pixels
 timing: diamond + UFSD

- 2018: $\mathcal{L}_{int} > 10 \text{ pb}^{-1}$
 - tracking: pixels
 - timing: diamond + double diamonds

J. Kašpar

Calibration

alignment

- special calibration fill
 - beam based alignment: as for LHC collimators
 - relative alignment: track-hit residual minimisation
 - alignment wrt. beam: symmetry of elastic scattering
- for each physics fill
 - hit distributions match to calibration fill

optics

- special calibration fill
- leading approximation

$$x pprox D_X \xi$$
 , $y pprox L_y(\xi) \, heta_y^pprox$

- for $\xi = \xi_0$: $L_y = 0 \Rightarrow$ "pinch" in hit distributions
- D_X estimated as x_0/ξ_0

• 2016: no timing RPs \rightarrow background suppressed by matching CMS and RPs

 typical remaining background: pile-up of unrelated central activity and forward protons (mainly SD)

- $\gamma\gamma \rightarrow l^+l^-$, lepton *l*: μ or e
- known (QED) physics \Rightarrow verification of the full chain: DAQ, reconstruction, alignment, optics, ...
- 2016 pre-TS2, 9.4/fb
- to enhance statistics: only single proton tag required
 - signal processes: left
 - main backgrounds: right

- central selection
 - $p_T(I) > 50$ GeV, m(II) > 110 GeV to avoid Z peak
 - II vertex separation
 - II acoplanarity (back-to-back)
- RP central matching within 2 σ

Di-lepton analysis of 2016 data

- data-driven background estimate
 - \circ $\mu\mu$: 1.5 \pm 0.5 events
 - \circ ee: 2.36 \pm 0.5 events
- matching events observed
 - μμ: 12
 - ee: 8

• \Rightarrow PPS works as desired

Di-photon analysis

• di-photon production

- $\circ\,$ high masses (> 200 GeV): $\gamma\gamma \to \gamma\gamma$ dominant
- $\circ~$ SM: no direct $\gamma\gamma\gamma\gamma$ coupling \Rightarrow sensitivity to anomalous couplings
- proto-analysis
 - $\circ \zeta_{1,2}$: 2 different levels of anomalous quartic coupling

- after cuts: background negligible
- analysis of 2016 data: publication in preparation
- J. Kašpar

Summary

• TOTEM

- $\circ\,$ recent results on $\sigma_{
 m tot}$ and ho
 - rule out most of the pre-LHC models
 - indicate existence of an Odderon, crossing-odd amplitude at high energies
- $\circ~$ Odderon hypothesis independently supported by pp and $p\overline{p}$ data in the dip region

• CMS + TOTEM

low-mass spectroscopy: important contribution to glueball searches

• PPS

- $\circ~$ rich extension to the LHC physics programme
- $\circ\,$ di-lepton analysis: PPS works as designed
- $\circ~$ di-photon and other analyses in progress