Forward physics at LHC with TOTEM and CMS

Jan Kašpar

Division Seminar at Institute of Physics, ASCR, Prague 31 May 2018

Outline

• TOTEM + CMS: first collaboration of experiments at IP5

- excellent pseudorapidity coverage: optimal for e.g. central exclusive diffraction
- \circ low pile-up conditions \Rightarrow clean signal
- cooperation mode: independent experiments, exchange of triggers, data merged offline

• PPS (Precision Proton Spectrometer)

 \circ (upgraded) forward-proton taggers fully integrated under CMS \circ high luminosity conditions \Rightarrow low cross-section processes (high

- high luminosity conditions \Rightarrow low cross-section processes (high mass, etc.)
- common features: rapidity gaps, particles in very forward region, surviving $protons \Rightarrow special detectors$

• Inelastic telescopes T1 and T2: charged particles from inelastic collisions

• Roman Pots (RP): elastic and diffractive protons close to outgoing beam
 $\frac{Q1-Q2-Q3}{Q1-Q2-Q3}$

 \circ station at 147m in Run $I \rightarrow$ station 210m in Run II

• all detectors: symmetric about IP5, trigger capable, radiation tolerant

Roman Pots (RPs)

- stations installed at ± 220 m in the outgoing LHC beam-pipe
- each station has two *units*, separated by \approx 5 m

- each unit contains 3 Roman Pots: top, bottom and horizontal
- Roman Pot $=$ movable beam-pipe insertion
	- beam unstable ⇒ RPs retracted to safe position
	- \circ beam stable \Rightarrow RPs as close to beam as reasonable
- typical approach: 10 σ_{beam} (record 3 σ_{beam})
- Roman Pot: container for sensors
- LS1: improved RF shield \Rightarrow possible close approach to highintensity beam

"Edgeless" silicon sensors

- each RP contains a *package* of 10 silicon sensors
- 5 pairs of back-to-back mounted strip sensors

- custom developed "edgeless" sensors \Rightarrow insensitive edge \approx 50 μ m (standard about 1 mm)
- single-sided p^+ -n
- 512 strips at pitch of 66 μ m, at 45 \degree wrt. cut edge
- operated at ≈ -20 °C, bias voltage ≈ 100 V

• proton transport: described as in linear optics

- proton reconstruction: inverted transport RPs \longrightarrow IP
o optical parameters functions of $\mathcal{F} \Rightarrow$ reconstruction
	- optical parameters functions of $\xi \Rightarrow$ reconstruction is non-linear problem
	- good knowledge of optics is crucial

LHC optics

• simulation of central diffraction for 2 different optics

low β ∗ **(LHC standard)**

 $L_x \approx 1.7$ m, $L_y \approx 14$ m, $D_x \approx 8$ cm $L_x \approx 0$, $L_y \approx 260$ m, $D_x \approx 4$ cm diffractive protons in horizontal RPs

β ∗ = **90** m **(special for TOTEM)**

diffractive protons in vertical RPs

- optics typically "labelled" by $\beta^* \equiv$ betatron function at IP
	- \circ beam width: $\sqrt{\varepsilon\beta}$, ε: beam emittance
	- \circ beam angular divergence: $\sqrt{\varepsilon/\beta}$
	- \circ luminosity \propto (beam width at IP) $^{-2}$ $\propto1$ / β^*

Typical run scenarios

 $t\approx -\rho^2\theta^2$: four-momentum transfer squared ξ = ∆p/p: fractional momentum loss

TOTEM

[list of TOTEM publications](http://totem.web.cern.ch/Totem/publunhbox voidb@x kern .06em vbox {hrule width.3em}new.html)

- $p + p \rightarrow p + p$, forward protons measured by RPs
- strong selection: two anti-collinear protons from the same vertex
- results overview (selection):

• different $|t|$ probe *different physics regimes* – from lowest to highest $|t|$:
 \circ Coulomb interference: phase determination

- Coulomb interference: phase determination
- diffractive cone: non-perturbative, Pomeron
- dip-bump: amplitude interference, Odderon effects
- transition to perturbative QCD
I. Kašpar *Division Seminar at Institute o*

Elastic scattering

• \sqrt{s} = 13 TeV:

model predictions:

• high-|t|: no structures!

- rules out many models
- rules out physics mechanism: "optical" models
- physics interpretation: transition between diffraction
and pQCD? \Rightarrow e.g. Donnachie-Landshoff \Rightarrow \Rightarrow e.g. Donnachie-Landshoff \Rightarrow

- inelastic cross-section: event counting with T2 (and T1)
	- 95 % of inelastic events have at least 1 track in the T2 region
	- only one significant MC correction: contribution from low mass diffraction

Cross-section results

• \sqrt{s} = 7 TeV: all 3 methods consistent

• energy dependence: in general compatible with $ln²(s)$ at high energies

- scattering at high energy and low $|t| \Rightarrow$ gluon dominated regime
- Pomeron: standard exchange, 2 mutually interacting gluons \circ amplitude crossing even = same for pp and $p\bar{p}$ ◦ Ael(t = 0) ∼ imaginary
- Odderon: (so far) hypothetical exchange, 3 mutually interacting gluons

 \circ amplitude crossing odd = opposite sign for pp and pp

 \circ $\mathcal{A}_{\text{el}}(t = 0) \sim$ real

- solid theoretical basis: axiomatic field theory, Regge theory, perturbative and (semi-)non-perturbative QCD, lattice QCD, AdS/CFT
- (generalised) Pomeranchuk theorem:

$$
\sigma^{pp}_{tot}/\sigma^{p\overline{p}}_{tot} \rightarrow 1 \quad \text{for } s \rightarrow \infty
$$

 $\,\circ\,$ allows for pp vs. ${\sf p}\overline{\sf p}$ difference non vanishing at high energies

 ρ parameter

$$
\rho = \frac{\Re \mathcal{A}_{\text{el}}}{\Im \mathcal{A}_{\text{el}}} \bigg|_{t=0}
$$

◦ sensitivity to Pomeron/Odderon ratio

- interactions responsible for proton-proton elastic scattering:
	- electromagnetic ("Coulomb"): very low |t|
	- strong ("nuclear"): higher |t|

 \circ at 13 TeV, contributions of similar size at $|t| \approx 6 \cdot 10^{-4}$ GeV²

– sizeable interference effect \Rightarrow can determine nuclear phase wrt. Coulomb phase (known from QED)

• observed cross-section

- our modelling
	- "interference formula" = summation for practical applications
		- considered: West-Yennie, Cahn and Kundrát-Lokajíček
	- Coulomb amplitude: QED + experimental form factors
	- ϕ modulus of \mathcal{A}^{N} : empirical guidance \Rightarrow at low $|t|$: a exp $\Big(\sum\limits_{i=1}^{N_b}$

$$
\sum_{n=1}^{N_b} b_n t^n\bigg)
$$

- \circ phase of \mathcal{A}^N
	- different assumptions \Rightarrow different behaviour in b space
	- assume slow variation with $|t| \Rightarrow$ fair comparison with pre-LHC data

• simulation (with realistic nuclear component):

ρ measurement : Comparison to previous measurements

 \Rightarrow 13 TeV measurement significantly lower than extrapolations (more than 4 σ effect)

Comparison to COMPETE

- comprehensive study of pre-LHC data by COMPETE
	- \circ 256 models considered to describe σ_{tot} and ρ data in pp, pπ, pK, ...
		- various assumptions on energy dependence, reaction dependence
		- asymptotic component: only crossing-even
	- 23 models (shown above) found to give reasonable description
		- predictions cluster in 3 bands

• red: selection of TOTEM measurements
I. Kašpar **Division Seminar at Institute of Physics**,

Dispersion relations

• simple version of derivative dispersion relation for *crossing-even* amplitude

$$
\rho \approx \frac{\pi}{2\sigma_{\text{tot}}} \frac{\text{d}\sigma_{\text{tot}}}{\text{d}\ln s}
$$

- ∘ faster σ_{tot} rise \Rightarrow higher value of ρ
∘ TOTFM data show the opposite \Rightarrow m
- TOTEM data show the opposite \Rightarrow model-independent argument for crossingodd component

Models compatible with TOTEM data

- Nicolescu et al. (updated version of original model)
	- crossing-odd effect: strong energy dependence, increase with energy \circ TOTFM's ρ measurement at $\sqrt{s} = 13$ TeV correctly predicted long before
	- \circ TOTEM's ρ measurement at $\sqrt{s} = 13$ TeV correctly predicted long before LHC
	- considered as first experimental evidence for "Odderon"
- Durham group (model enhanced with crossing-odd contribution) ◦ crossing-odd effect: mild energy dependence, decrease with energy

\Rightarrow crossing-odd component needed to describe data

Indications for crossing-odd contribution at $t \neq 0$

- dip: crossing-even contribution suppressed \rightarrow crossing-odd effect significant \circ prediction: $p\overline{p}$ shallow while pp pronounced dip
- low energy (ISR, 53 GeV):
	- secondary (mesonic) reggeons complicate interpretation

• high energy: $gluon-dominated regime$, secondary reggeons negligible \circ left: $p\bar{p}$, \circ other: $p\bar{p}$ (unique!) LHC measurements by TOTEM

TOTEM + CMS

• exclusive central diffraction

- \circ exchange of colour singlets with vacuum quantum numbers \Rightarrow selection rules for system X: $J^{PC} = 0^{++}$, 2⁺⁺
- \circ kinematics matching RP vs. CMS (M_X, y_X, vertex) \Rightarrow strong background suppression
- $\circ \,$ low M_X (few GeV) \Rightarrow $x \sim 10^{-4} \Rightarrow$ probing gluon content of proton \Rightarrow optimal for glueball searches via mass spectroscopy

• other processes of interest (non-exhaustive)

- SD + jet-gap-jet: BFKL effects
- \circ SD + di-jet, SD + jet + γ: Pomeron structure functions

Glueball searches

- glueball = hypothetical particle composed solely of gluons (no valence quarks)
	- features: charge neutral, no coupling to photons, flavour symmetry in decays
	- in experimental reach (due to selection rules): scalar and tensor
- tensor glueball: theory
	- \circ lattice QCD predictions narrow state
 \circ SU(3), decay modes equi-flavour ?
	- $SU(3)_f$ decay modes equi-flavour ?
		- raw: ππ KK : ηη : ηη' : η'η' =
			- $\rho\rho: \mathsf{K}^*\overline{\mathsf{K}}^*:\omega\omega:\omega\varphi:\varphi\varphi=3:4:1:0:1$
		- with phase space correction

$$
\rho \rho : K^* \overline{K}^* : \omega \omega : \varphi \varphi = 1 : 0.84 : 0.32 : 0.11
$$

- \circ q \overline{q} mesons: branching ratios different
	- depend on quark flavour
- tensor glueball: experiment
	- previous studies (searched for decades): MARK3, BES, CLEO, PANDA, ...
	- only not-yet excluded candidate: fJ(2220)
		- already shown: flavour symmetry in 2-particle decays, no γγ decays
		- decays to vector mesons not yet observed \Rightarrow decisive glueball signature

- tensor glueball: CMS + TOTEM
	- \circ sensitivity only to charged decays $\rightarrow \rho \rho : K^* \overline{K}^* : \varphi \varphi = 0.33 : 0.10 : 0.03$
	- CMS mass resolution: about 25 MeV
- 2015 data (13 TeV, 0.4 pb^{-1})
	- \circ β^{*} = 90 m \Rightarrow low ξ available, low pile-up ($\mu \approx 0.1$)
	- CMS and TOTEM: separate DAQ, trigger exchange
		- trigger: RP double arm, T2 veto, 5 pixel clusters
		- offline event merging
	- \circ CMS: optimised low ρ_{T} track reconstruction

• analysis strategy

- \circ final states of interest: $\rho\rho\to\pi\pi\pi\pi$, $\varphi\varphi\to$ KKKK and K*K* \to $\pi\pi$ KK
- per-pair mass compatible with vector meson hypothesis
- effect in mass spectrum: excess or deficit (depending on phases)
- \circ analysis of azimuthal-angle distribution \Rightarrow spin, parity
- publication in CMS review

• new run in few weeks, goal: higher statistics (profit from timing detectors)

Precision Proton Spectrometer

Physics motivation

(model independent studies)

• conditions

- \circ high mass, low cross-sections \to need low β^* and long integration times \to standard LHC fills
- ∘ high pile-up (up to $\mu \approx 50$), high track multiplicity, high radiation dose \Box

• tracking RPs: pixels sensors

- 3D technology: radiation hardness
- \circ pixel size 100 x 150 μ m: tracking efficiency
- insensitive edge 200 µm: little acceptance loss
- timing RPs: diamond sensors
	- 2018: 1 RP per arm
		- 2 planes of (single) diamond, resolution \approx 100 ps
		- 2 planes of double diamond, resolution \approx 50 ps
	- plan to use 2 timing RPs with double diamonds

- 2016: $\mathcal{L}_{int} = 15 \text{ pb}^{-1}$
	- "accelerated": "750 GeV excess" reported by ATLAS and CMS
	- tracking: strips (TOTEM)
	- timing: none

• 2017: $\mathcal{L}_{int} = 40$ pb⁻¹

 \circ tracking: strips and pixels
 \circ timing: diamond + UFSD timing: diamond + UFSD

- 2018: $\mathcal{L}_{int} > 10 \text{ pb}^{-1}$
	- tracking: pixels
	- \circ timing: diamond + double diamonds

Calibration

• alignment

- special calibration fill
	- beam based alignment: as for LHC collimators
	- relative alignment: track-hit residual minimisation
	- alignment wrt. beam: symmetry of elastic scattering
- for each physics fill
	- hit distributions match to calibration fill

• optics

- special calibration fill
- leading approximation

 $x \approx D_X \xi$, $y \approx L_y(\xi) \theta^*_y$

- \circ for $\xi = \xi_0$: $L_y = 0 \Rightarrow$ "pinch" in hit distributions
- \circ D_{X} estimated as x_{0}/ξ_{0}

2016 data analyses

• 2016: no timing RPs \rightarrow background suppressed by matching CMS and RPs

◦ typical remaining background: pile-up of unrelated central activity and forward protons (mainly SD)

- $\bullet\ \gamma\gamma\rightarrow l^+l^-$, lepton *l*: μ or e
- known (OED) physics \Rightarrow verification of the full chain: DAO, reconstruction, alignment, optics, ...
- 2016 pre-TS2, 9.4/fb
- to enhance statistics: only single proton tag required
	- signal processes: left
	- main backgrounds: right

- central selection
	- \circ $p_{\mathcal{T}}(l)$ $>$ 50 GeV, $m(ll)$ $>$ 110 GeV to avoid Z peak
	- ll vertex separation
	- ll acoplanarity (back-to-back)
- RP central matching within 2 σ

Di-lepton analysis of 2016 data

- data-driven background estimate
	- \circ $\mu\mu$: 1.5 \pm 0.5 events
	- \circ ee: 2.36 $+$ 0.5 events
- matching events observed
	- \circ $\mu\mu$: 12
	- ee: 8 CMS+TOTEM 2016. L = 9.4 fb⁻¹, \sqrt{s} = 13 TeV $\frac{1}{100}$ 0.18

$\bullet \Rightarrow$ PPS works as desired

Di-photon analysis

• di-photon production

- \circ high masses (> 200 GeV): $\gamma \gamma \rightarrow \gamma \gamma$ dominant
- \circ SM: no direct γγγγ coupling \Rightarrow sensitivity to anomalous couplings
- proto-analysis
	- \circ $\zeta_{1,2}$: 2 different levels of anomalous quartic coupling

- after cuts: background negligible
- analysis of 2016 data: publication in preparation
I. Kašpar **bilgen Division Seminar at Institute of Physics**, ASCR, Praque

Summary

• TOTEM

- \circ recent results on σ_{tot} and ρ
	- rule out most of the pre-LHC models
	- indicate existence of an Odderon, crossing-odd amplitude at high energies
- \circ Odderon hypothesis independently supported by pp and pp data in the dip region

• CMS + TOTEM

◦ low-mass spectroscopy: important contribution to glueball searches

• PPS

- rich extension to the LHC physics programme
- di-lepton analysis: PPS works as designed
- di-photon and other analyses in progress