# Lifetime, Mixing, and *CP* Violation Measurements in ATLAS

Seminar IoP 26. 05. 2016

Tomas Jakoubek

IoP ASCR, FNSPE CTU, CERN tomas.jakoubek@cern.ch

- First observed in the neutral kaon system:  $K^0$  and its antiparticle  $\bar{K}^0$  can oscillate into each other before they decay via weak interaction
- However  $K^0$  and  $\bar{K}^0$  are the *flavour* eigenstates of the system
- The two mass eigenstates (K<sup>0</sup><sub>S</sub> and K<sup>0</sup><sub>L</sub>) are quantum mechanical superpositions of the flavour eigenstates
- At first it was thought that the mass eigenstates were also CP eigenstates (only decays  $K_S^0 \to \pi\pi$  and  $K_L^0 \to \pi\pi\pi$  were observed)



Precise measurement of upper limit for the *CP* violating decay  $K_L^0 \rightarrow \pi\pi$  (Cronin and Fitch, 1964 [1]) showed that the mass eigenstates are not equivalent to the *CP* eigenstates and thus established *CP* violation as a fact

# Neutral Meson Mixing

The time evolution of the wave function

$$|\psi(t)\rangle = a(t)|B_q^0\rangle + b(t)|\bar{B}_q^0\rangle$$
 (1)

is governed by the time dependent Schrödinger's equation

$$i\frac{\mathrm{d}}{\mathrm{d}t}\left(\begin{array}{c}|B_{q}^{0}\rangle\\|\bar{B}_{q}^{0}\rangle\end{array}\right) = \left(\mathsf{M} - \frac{i}{2}\Gamma\right)\left(\begin{array}{c}|B_{q}^{0}\rangle\\|\bar{B}_{q}^{0}\rangle\end{array}\right),\tag{2}$$

where M and  $\boldsymbol{\Gamma}$  are 2  $\times$  2 hermitian matrices (mass and decay width respectively):

$$\mathbf{M} = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{22} \end{pmatrix}, \quad \mathbf{\Gamma} = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{22} \end{pmatrix}$$
(3)  
Diagonal elements of each of these matrices are the same  
(assuming *CPT* invariance):  $M_{11} = M_{22} = M$  and  
 $\Gamma_{11} = \Gamma_{22} = \Gamma$ .

# Neutral Meson Mixing

- One can obtain the mass eigenstates from the equation 2 by diagonalizing the matrix  $(M \frac{i}{2}\Gamma)$ .
- Heavy (B<sub>H</sub>) and light (B<sub>L</sub>) mass eigenstates can be thus written as

$$\begin{array}{l} |B_{H}\rangle \equiv p|B_{q}^{0}\rangle - q|\bar{B}_{q}^{0}\rangle \\ |B_{L}\rangle \equiv p|B_{q}^{0}\rangle + q|\bar{B}_{q}^{0}\rangle \end{array}$$

$$\tag{4}$$

with normalization  $\sqrt{p^2 + q^2} = 1$  and  $\frac{q}{p} = \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}}$ .

The real and imaginary parts of their corresponding eigenvalues  $\omega_{H,L}$  represent their masses and decay widths

$$\omega_{H,L} = \mathbf{M} - \frac{i}{2} \mathbf{\Gamma} \pm \frac{q}{p} \left( \mathbf{M}_{12} - \frac{i}{2} \mathbf{\Gamma}_{12} \right).$$

# Neutral Meson Mixing

• Mass difference  $\Delta m_q = m_q^H - m_q^L = \Re(\omega_H - \omega_L)$  have been measured precisely [3]:

 $\Delta m_s = (17.757 \pm 0.021) \text{ ps}^{-1}, \Delta m_d = (0.5055 \pm 0.0020) \text{ ps}^{-1}$ 

Decay width difference  $\Delta \Gamma_q = \Gamma_q^L - \Gamma_q^H = -2\Im(\omega_L - \omega_H)$  is predicted to be [4]:

 $\Delta\Gamma_{s} = (0.087 \pm 0.021) \ \mathrm{ps^{-1}}, \frac{\Delta\Gamma_{d}}{\Gamma_{d}} = (0.42 \pm 0.08) \times 10^{-2}$ 



Figure: One loop Feynman diagrams for  $B^0 - \bar{B}^0$  mixing.

# Types of CP Violation

- *CP* violation in decay (or direct *CP* violation): decay amplitudes of  $M \rightarrow f$  and  $\overline{M} \rightarrow \overline{f}$  are different
- *CP* violation in mixing (or indirect *CP* violation): asymmetry in the particle antiparticle oscillations...

$$\frac{q}{p} \neq 1 \tag{6}$$

In this case the CP eigenstates are not equivalent to the mass eigenstates.



*CP* violation in interference of mixing and decay can only occur if  $M^0$  and  $\overline{M}^0$  decay into the same final state; The common final state is reached via two different decay chains:  $M^0 \to f$  and  $M^0 \to \overline{M}^0 \to f$  (case of  $B_s^0 \to J/\psi\phi$ )

# Motivation: New Physics (CPV in $B_s^0 \rightarrow J/\psi\phi$ [7] + [8] + [9])

- *CP* violating phase is defined as the weak phase difference between the  $B_s^0 \overline{B}_s^0$  mixing amplitude and the  $b \to c \overline{c} s$  decay amplitude
- In the Standard Model (SM) it can be related to the CKM matrix

$$\phi_{s} \simeq -2\beta_{s} = -2\arg\left(\frac{V_{ts}V_{tb}^{\star}}{V_{cs}V_{cb}^{\star}}\right) \tag{7}$$

and then  $\phi_s = -0.0363^{+0.0016}_{-0.0015}$  rad can be predicted

- A sizable deviation from this value would be a clear sign of beyond SM physics
  - $\Delta\Gamma_s$  is not sensitive to New Physics, but can be used to test theoretical predictions
  - The New Physics processes could introduce additional contributions to the box diagrams describing the  $B_s^0$  mixing FZU

# Angular Analysis

- $B^0_s 
  ightarrow J/\psi \phi = {
  m pseudoscalar}$  to vector-vector
- Final state: admixture of CP-odd (L = 1) and CP-even (L = 0, 2) states
- Distinguishable through time-dependent angular analysis
- Non-resonant S-wave decay  $B_s^0 \to J/\psi K^+ K^-$  and  $B_s^0 \to J/\psi f_0$  contribute to the final state
- Included in the differential decay rate due to interference with the  $B_s^0 \to J/\psi(\mu^+\mu^-)\psi(\kappa^+\kappa^-)$  decay



Figure: Angles between final state particles in transversity basis.

## Decay Rate

 Ignoring detector effects, the distribution for the time and angles is given by the differential decay rate

$$\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}t\,\mathrm{d}\Omega} = \sum_{k=1}^{10} \mathcal{O}^{(k)}(t) g^{(k)}(\theta_{T}, \psi_{T}, \phi_{T}) \tag{8}$$

| k  | $\mathcal{O}^{(k)}(t)$                                                                                                                                                                          | $g^{(k)}(\theta_T, \psi_T, \phi_T)$                               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1  | $\frac{1}{2} A_0(0) ^2 \left[ (1 + \cos \phi_s) e^{-\Gamma_L^{(0)}t} + (1 - \cos \phi_s) e^{-\Gamma_{tt}^{(0)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$                   | $2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$                     |
| 2  | $\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1 + \cos \phi_{s}) e^{-\Gamma_{L}^{(s)}t} + (1 - \cos \phi_{s}) e^{-\Gamma_{H}^{(s)}t} \pm 2e^{-\Gamma_{s}t} \sin(\Delta m_{s}t) \sin \phi_{s}\right]$ | $\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$               |
| 3  | $\frac{1}{2} A_{\perp}(0) ^{2}\left[(1 - \cos \phi_{s}) e^{-\Gamma_{t}^{(s)}t} + (1 + \cos \phi_{s}) e^{-\Gamma_{tt}^{(s)}t} \mp 2e^{-\Gamma_{s}t} \sin (\Delta m_{s}t) \sin \phi_{s}\right]$   | $\sin^2 \psi_T \sin^2 \theta_T$                                   |
| 4  | $\frac{1}{2} A_0(0)  A_{\parallel}(0) \cos \delta_{\parallel}$                                                                                                                                  | $-\frac{1}{\sqrt{2}} \sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$   |
|    | $\left[\left(1 + \cos \phi_s\right) e^{-\Gamma_t^{(s)}t} + \left(1 - \cos \phi_s\right) e^{-\Gamma_t^{(s)}t} \pm 2e^{-\Gamma_s t} \sin (\Delta m_s t) \sin \phi_s\right]$                       | -                                                                 |
| 5  | $ A_{  }(0)  A_{\perp}(0)  \frac{1}{2}(e^{-\Gamma_{L}^{(*)}t} - e^{-\Gamma_{H}^{(*)}t})\cos(\delta_{\perp} - \delta_{  })\sin\phi_{s}$                                                          | $\sin^2\psi_T\sin2	heta_T\sin\phi_T$                              |
|    | $\pm e^{-i_s t} (\sin (\delta_{\perp} - \delta_{\parallel}) \cos (\Delta m_s t) - \cos (\delta_{\perp} - \delta_{\parallel}) \cos \phi_s \sin (\Delta m_s t))]$                                 |                                                                   |
| 6  | $ A_0(0)  A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_L^{(1)}t} - e^{-\Gamma_H^{(1)}t})\cos \delta_{\perp}\sin \phi_s$                                                                                 | $\frac{1}{\sqrt{2}}$ sin $2\psi_T$ sin $2\theta_T$ cos $\phi_T$   |
|    | $\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$                                                                            | -                                                                 |
| 7  | $\frac{1}{2} A_{5}(0) ^{2}\left[(1 - \cos \phi_{s}) e^{-\Gamma_{L}^{(e)}t} + (1 + \cos \phi_{s}) e^{-\Gamma_{H}^{(e)}t} \mp 2e^{-\Gamma_{s}t} \sin(\Delta m_{s}t) \sin \phi_{s}\right]$         | $\frac{2}{3}(1 - \sin^2 \theta_T \cos^2 \phi_T)$                  |
| 8  | $ A_{S}(0)  A_{\parallel}(0)  _{2}^{\frac{1}{2}}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s}$                                             | $\frac{1}{3}\sqrt{6}\sin \psi_T \sin^2 \theta_T \sin 2\phi_T$     |
|    | $\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos \phi_s \sin(\Delta m_s t))]$                                            |                                                                   |
| 9  | $\frac{1}{2} A_{5}(0)  A_{\perp}(0) \sin(\delta_{\perp}-\delta_{5}) $                                                                                                                           | $\frac{1}{3}\sqrt{6}\sin\psi_T \sin 2\theta_T \cos\phi_T$         |
|    | $(1 - \cos \phi_s) e^{-\Gamma_t^{(t)}t} + (1 + \cos \phi_s) e^{-\Gamma_{tt}^{(t)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s$                                                        |                                                                   |
| 10 | $ A_0(0)  A_5(0) [\frac{1}{2}(e^{-\Gamma_{11}^{(s)}t} - e^{-\Gamma_{1.}^{(s)}t})\sin \delta_5 \sin \phi_s$                                                                                      | $\frac{4}{3}\sqrt{3}\cos\psi_T (1 - \sin^2\theta_T \cos^2\phi_T)$ |
|    | $\pm e^{-\Gamma_s t} (\cos \delta_5 \cos(\Delta m_s t) + \sin \delta_5 \cos \phi_s \sin(\Delta m_s t))]$                                                                                        |                                                                   |



Seminar loP 26. 05. 2016

### Used Data

- 4.9 fb<sup>-1</sup> 7 TeV pp 2011 (untagged [7] + tagged [8])
- 14.3 fb<sup>-1</sup> 8 TeV pp 2012 (statistically combined with 7 TeV to RUN1 tagged analysis [9])
- Collected by trigger based on identification of  $J/\psi \rightarrow \mu^+\mu^$ with  $p_{\rm T}(\mu)$  threshold (vary over run periods)
- Two muon tracks and two tracks (no PID, but not muons), refitting, using only the best candidate in the event
- NO lifetime cut! Sig-Bck separation done by the fit



# Flavour Tagging

- At the LHC B-mesons are produced in the hadronization of bb
  pair
- The majority of these pairs are produced either both in the forward or both in the backward direction of the detector
- Self-tagging  $B^{\pm} \to J/\psi K^{\pm}$  channel used for calibration and performance estimation



Figure: Same side vs. opposite side taggers (OST)

### Flavour Tagging Methods

- 3 tagging methods for the other B-meson (OST)
- Muon/electron tagging:
  - Use semi-leptonic decay of the B
  - $b 
    ightarrow \mu/e$  transition: b flavour given by lepton charge
  - Use momentum weighed charge of lepton and tracks around the lepton
  - Diluted by b → c → l cascade decays and neutral B-meson oscillations
- Jet-charge tagging:
  - Used if the additional muon/electron is absent
  - Use momentum-weighted track-charge in jet





#### Flavour Tagging Methods

- From a calibration sample, the opposite-side charge is mapped to a Probability that the event is a B or B
  , and put into the likelihood fit on per-candidate basis
- If there is no tagging information, P = 0.5 is assigned



Figure: The tag-probability for tagging using (from left to right) combined-muons, electrons, segment-tagged muons, and jet-charge. Black dots are data after removing spikes, blue is a fit to the sidebands, green to the signal and red is a sum of both fits.

#### Flavour Tagging Comparison with Untagged Analysis, 2011 Data



Figure: Likelihood contours in the  $\phi_s - \Delta \Gamma_s$  plane for untagged (left) and tagged (right) analysis. Three contours show the 68%, 90%, and 95% confidence intervals (statistical errors only). The green band is the theoretical prediction of mixing-induced CP violation.

# Maximum Likelihood Fit

Observed variables:

B<sub>s</sub> mass m<sub>i</sub>

**B**<sub>s</sub> proper decay time  $t_i$  and its uncertainty;  $t = \frac{L_{xy}m_B}{p_T}$ 

- **3** angles between final state particles in transversity basis  $\Omega_i(\theta_{Ti}, \phi_{Ti}, \psi_{Ti})$
- **B**<sub>s</sub> momentum  $p_{Ti}$

•  $B_s$  tag probability  $P(B|Q_i)$  and tagging method  $M_i$ 

Determine 9 physics variables to describe B<sub>s</sub> → J/ψφ and S-wave: ΔΓ<sub>s</sub>, φ<sub>s</sub>, Γ<sub>s</sub>, |A<sub>0</sub>(0)|<sup>2</sup>, |A<sub>||</sub>(0)|<sup>2</sup>, |A<sub>5</sub>(0)|<sup>2</sup>, δ<sub>||</sub>, δ<sub>⊥</sub>, δ<sub>s</sub>

$$\begin{aligned} \ln \ \mathcal{L} &= \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{\mathrm{s}} \cdot \mathcal{F}_{\mathrm{s}}(m_i, t_i, \sigma_t, \Omega_i, P(B|Q)) + \\ &+ f_{\mathrm{s}} \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \sigma_t, \Omega_i) + \\ &+ (1 - f_{\mathrm{s}} \cdot (1 + f_{B^0})) \cdot \mathcal{F}_{\mathrm{bkg}}(m_i, t_i, \Omega_i)) \} \end{aligned}$$



# Maximum Likelihood Fit

- Signal PDF consists of:
  - Mass PDF: 3 gaussians with same mean
  - Time-angular PDF convolved with time resolution function G(t, σ(t<sub>i</sub>)). Flavor-dependent terms weighted by the corresponding tagging probability
  - Angular acceptance (from MC, in bins of p<sub>T</sub>)
  - **Punzi terms**: empirical distributions of  $\sigma(t_i)$ ,  $p_{\rm T}$ , and P(B|Q)
- Background PDF:
  - **Mass PDF**: exponential + const.
  - Time PDF: delta-function + 3 exponentials convolved with time resolution function G(t, σ(t<sub>i</sub>))
  - Angular PDF: Legendre polynomial functions





### Fit Projection 2012 Data

- Fit projection to all data passing selections
- 74,900  $\pm$  400 signal  $B_s$  from the fit



# Systematic Uncertainties 2012 Data

|                          | $\phi_s$    | $\Delta \Gamma_s$ | $\Gamma_s$  | $ A_{\parallel}(0) ^2$ | $ A_0(0) ^2$ | $ A_S(0) ^2$ | $\delta_{\perp}$ | $\delta_{\parallel}$ | $\delta_{\perp} - \delta_S$ |
|--------------------------|-------------|-------------------|-------------|------------------------|--------------|--------------|------------------|----------------------|-----------------------------|
|                          | [rad]       | $[ps^{-1}]$       | $[ps^{-1}]$ |                        |              |              | [rad]            | [rad]                | [rad]                       |
|                          |             |                   |             |                        |              |              |                  |                      |                             |
| Tagging                  | 0.025       | 0.003             | $< 10^{-3}$ | $< 10^{-3}$            | $< 10^{-3}$  | 0.001        | 0.236            | 0.014                | 0.004                       |
| Acceptance               | $< 10^{-3}$ | $< 10^{-3}$       | $< 10^{-3}$ | 0.003                  | $< 10^{-3}$  | 0.001        | 0.004            | 0.008                | $< 10^{-3}$                 |
| Inner detector alignment | 0.004       | $< 10^{-3}$       | 0.002       | $< 10^{-3}$            | $< 10^{-3}$  | $< 10^{-3}$  | 0.112            | 0.006                | $< 10^{-3}$                 |
| Background angles model: |             |                   |             |                        |              |              |                  |                      |                             |
| Choice of $p_T$ bins     | 0.020       | 0.006             | 0.003       | 0.003                  | $< 10^{-3}$  | 0.008        | 0.004            | 0.006                | 0.008                       |
| Choice of mass interval  | 0.008       | 0.001             | 0.001       | $< 10^{-3}$            | $< 10^{-3}$  | 0.002        | 0.021            | 0.005                | 0.003                       |
| $B^0_d$ background model | 0.023       | 0.001             | $< 10^{-3}$ | 0.002                  | 0.002        | 0.017        | 0.090            | 0.011                | 0.009                       |
| Fit model:               |             |                   |             |                        |              |              |                  |                      |                             |
| Mass signal model        | 0.004       | $< 10^{-3}$       | $< 10^{-3}$ | 0.002                  | $< 10^{-3}$  | 0.001        | 0.015            | 0.017                | $< 10^{-3}$                 |
| Mass background model    | $< 10^{-3}$ | 0.002             | $< 10^{-3}$ | 0.002                  | $< 10^{-3}$  | 0.002        | 0.027            | 0.038                | $< 10^{-3}$                 |
| Time resolution model    | 0.003       | $< 10^{-3}$       | 0.001       | 0.002                  | $< 10^{-3}$  | 0.002        | 0.057            | 0.011                | 0.001                       |
| Default fit model        | 0.001       | 0.002             | $< 10^{-3}$ | 0.002                  | $< 10^{-3}$  | 0.002        | 0.025            | 0.015                | 0.002                       |
|                          |             |                   |             |                        |              |              |                  |                      |                             |
| Total                    | 0.041       | 0.007             | 0.004       | 0.006                  | 0.002        | 0.020        | 0.29             | 0.05                 | 0.01                        |



- Variation of tagging calibration parametrization
- Uncertainty estimated form **MC tests** of **acceptance** fitting method
- Variation of physics background fractions
- Pseudo-experiments with variations of parameterizations

## Results in RUN1

• Ambiguity in sign of  $\Delta \Gamma_s$ :

 $\{\phi_{s}, \Delta\Gamma_{s}, \delta_{\perp}, \delta_{\parallel}\} \rightarrow \{\pi - \phi_{s}, -\Delta\Gamma_{s}, \pi - \delta_{\perp}, 2\pi - \delta_{\parallel}\},$  (10)

 $\Delta\Gamma_s > 0$  constrained by LHCb (PRL 108 (2012) 241801)

| -          |                                   | 8 TeV data |       |       | 7 TeV data |       |       | Run1 combined |       |       |
|------------|-----------------------------------|------------|-------|-------|------------|-------|-------|---------------|-------|-------|
|            | Par                               | Value      | Stat  | Syst  | Value      | Stat  | Syst  | Value         | Stat  | Syst  |
| -          | $\phi_s$ [rad]                    | -0.123     | 0.089 | 0.041 | 0.12       | 0.25  | 0.05  | -0.098        | 0.084 | 0.040 |
|            | $\Delta \Gamma_s [ps^{-1}]$       | 0.096      | 0.013 | 0.007 | 0.053      | 0.021 | 0.010 | 0.083         | 0.011 | 0.007 |
|            | $\Gamma_s[\mathrm{ps}^{-1}]$      | 0.678      | 0.004 | 0.004 | 0.677      | 0.007 | 0.004 | 0.677         | 0.003 | 0.003 |
|            | $ A_{\parallel}(0) ^2$            | 0.230      | 0.005 | 0.006 | 0.220      | 0.008 | 0.009 | 0.227         | 0.004 | 0.006 |
|            | $ A_0(0) ^2$                      | 0.514      | 0.004 | 0.002 | 0.529      | 0.006 | 0.012 | 0.514         | 0.004 | 0.003 |
| À          | $ A_{S} ^{2}$                     | 0.090      | 0.008 | 0.020 | 0.024      | 0.014 | 0.028 | 0.071         | 0.007 | 0.017 |
| $\times 1$ | $\delta_{\perp}$ [rad]            | 4.46       | 0.48  | 0.29  | 3.89       | 0.47  | 0.11  | 4.13          | 0.33  | 0.16  |
| s          | $\delta_{\parallel}$ [rad]        | 3.15       | 0.13  | 0.05  | [3.04,     | 3.23] | 0.09  | 3.15          | 0.13  | 0.05  |
|            | $\delta_{\perp} - \delta_S$ [rad] | -0.08      | 0.04  | 0.01  | [3.02,     | 3.25] | 0.04  | -0.08         | 0.04  | 0.01  |
| M.         |                                   |            |       |       |            |       |       |               |       |       |

Seminar | oP 26. 05. 2016 T. Jakoubek: Lifetime, Mixing, and CPV in ATLAS

## Comparison

|                | Lumi                    | $\phi_s$ [rad]               |
|----------------|-------------------------|------------------------------|
| ATLAS RUN1     | $19.2 \; {\rm fb}^{-1}$ | $-0.098 \pm 0.084 \pm 0.040$ |
| LHCb RUN1      | $3.0~{ m fb}^{-1}$      | $-0.058 \pm 0.049 \pm 0.006$ |
| CMS 2012       | $19.7~{ m fb}^{-1}$     | $-0.075\pm0.097\pm0.031$     |
| Standard Model | -                       | $-0.037 \pm 0.002$           |

No sign for physics beyond the Standard Model :-(



FZŰ

Seminar |oP 26. 05. 2016

T. Jakoubek: Lifetime, Mixing, and CPV in ATLAS

**Motivation:** Test of the SM (Relative Width Difference in  $B^0 - \overline{B}^0$  system [13])

• The relative value of  $\frac{\Delta \Gamma_d}{\Gamma_d}$  is reliably predicted in the SM [4]:

$$\frac{\Delta\Gamma_d}{\Gamma_d} = (0.42 \pm 0.08) \times 10^{-2}$$

- It has been shown [14] that a relatively large variation of ΔΓ<sub>d</sub> due to a possible new physics contribution would not contradict other existing SM results
- Precise measurement would therefore provide a stringent test of the underlying theory, complementary to other searches
- Current experimental uncertainty on  $\Delta\Gamma_d$  is much larger than the SM central value:  $\frac{\Delta\Gamma_d}{\Gamma_d} = (0.1 \pm 1.0) \times 10^{-2}$  (World avg.) Furthermore, the measurements of  $\Delta\Gamma_d$  made by Belle [15] and LHCb [16] differ by more than  $1.5\sigma$ 
  - Therefore, more precise measurements of  $\Delta\Gamma_d$  are needed to establish its value and perform an important test of the SMFZU

## Measurement Method

The decay rate of the light and heavy mass eigenstates (B<sup>L</sup><sub>d</sub> and B<sup>H</sup><sub>d</sub>) to a given final f state can be different. Therefore the time dependence of the decay rate of B<sup>0</sup> → f is sensitive to f
 The untagged time-dependant decay rate of a B<sup>0</sup> meson into final state f is given by:

$$\Gamma(f, t) \propto e^{-\Gamma_d t} \{ \cosh \frac{\Gamma_d t}{2} + A_p A_{\rm CP}^{\rm dir} \cos (\Delta m_d t) + A_{\Delta\Gamma} \sinh \frac{\Gamma_d t}{2} + A_p A_{\rm CP}^{\rm mix} \sin (\Delta m_d t) \}$$
(11)

Considered final states are:

 $\begin{array}{l} I/\psi(\mu^{-}\mu^{+})K^{*0}(K^{+}\pi^{-}) \text{ with } A_{\rm CP}^{\rm dir}=\pm 1, \ A_{\Delta\Gamma}=0, \ A_{\rm CP}^{\rm mix}=0, \\ J/\psi(\mu^{-}\mu^{+})K_{S}(\pi^{-}\pi^{+}) \text{ with } A_{\rm CP}^{\rm dir}=0, \ A_{\Delta\Gamma}=\cos 2\beta, \\ A_{\rm CP}^{\rm mix}=-\sin 2\beta, \text{ where } \beta \text{ is the Unitarity Triangle angle} \end{array}$ 

measured as sin  $2eta=0.679\pm0.020$  $A_{p}$  is the production asymmetry of  $B^{0}$  and  $ar{B}^{0}$ 

### Measurement Method

The value of  $\Delta \Gamma_d$  can be determined by measuring the experimental ratio of proper decay lengths  $L_{\text{prop}}^B$  of the two channels

$$R(L_{\rm prop}^{B}) = \frac{N(B^{0} \to J/\psi K_{S}, L_{\rm prop}^{B})}{N(B^{0} \to J/\psi K^{*0}, L_{\rm prop}^{B})},$$
(12)

where  $N(B^0 \rightarrow J/\psi K_S, L_{\text{prop}}^B)$  and  $N(B^0 \rightarrow J/\psi K^{*0}, L_{\text{prop}}^B)$ are the number of reconstructed  $B^0$  decays to the specified final state as a function of  $L_{\text{prop}}^B$ 





## Measurement Method

- The predicted decay rate as a function of  $L^B_{\rm prop}$  for the decay  $B^0 \to f$  is

$$\Gamma(f, L_{\text{prop}}^{B}) = \int_{0}^{\infty} G(L_{\text{prop}}^{B} - ct, f) \Gamma(f, t) dt \qquad (13)$$

where  $G(L_{\text{prop}}^B - ct, f)$  is the function describing the resolution of  $L_{\text{prop}}^B$  for a given channel f

 R(L<sup>B</sup><sub>prop</sub>) is dependent on ΔΓ<sub>d</sub> which can therefore be measured by fitting R(L<sup>B</sup><sub>prop</sub>) using the predicted decay rates
 of the J/ψK<sub>S</sub> and J/ψK<sup>\*0</sup> channels





- The technique used to measure the proper decay length  $(L^B_{\text{prop}})$  is designed to use the same input information for both the  $B^0 \to J/\psi K_S$  and  $B^0 \to J/\psi K^{*0}$  channels
- This reduces the experimental bias in  $R(L_{prop}^B)$
- The origin of the  $B^0$  ( $x^{PV}, y^{PV}$ ) is measured using a PV fit in which the decay products of the  $B^0$  are removed
- Position of the  $B^0$  decay is defined by the  $J/\psi$  decay vertex  $(x^{J/\psi}, y^{J/\psi})$
- For each reconstructed  $B^0 \rightarrow J/\psi K_S$  and  $B^0 \rightarrow J/\psi K^{*0}$  candidate, the proper decay length is constructed

$$\mathcal{L}_{ ext{prop}}^{B} = rac{(x^{J/\psi} - x^{ ext{PV}}) p_{ ext{T},x}^{B} + (y^{J/\psi} - y^{ ext{PV}}) p_{ ext{T},y}^{B}}{p_{ ext{T}^{2}}^{B}} m_{E}^{B}$$

- The proper decay length distribution is obtained by first dividing the range of L<sup>B</sup><sub>prop</sub> between -0.3 and 6.0 mm into ten bins
- In each bin, distributions of the invariant mass of J/\u03c6Ks and J/\u03c6K\*<sup>0</sup> are produced and the number of signal B<sup>0</sup> in each bin is determined by a fit to these distributions
- The ratio of the number of  $B^0$  candidates in the two channels in each  $L^B_{prop}$  bin gives the experimental ratio

$$R_{i,\text{uncor}}(L^{B}_{\text{prop}}) = \frac{N_{i}(J/\psi K_{S})}{N_{i}(J/\psi K^{*0})}$$





# Ratio of Reconstruction E

- $R_{i,\text{uncor}}(L^B_{\text{prop}})$  must be corrected to account for the difference in the reconstruction efficiencies of the two channels
- This difference is the largest source of experimental bias in  $R_{\text{uncor}}(L_{\text{prop}}^B)$  and it can be assessed only with MC
- Measure the ratio of reconstruction efficiencies in MC defined as

$$R_{i,\text{eff}}(L^{B}_{\text{prop}}) = \frac{\epsilon_{i}(B^{0} \to J/\psi K_{S}, L^{B}_{\text{prop}})}{\epsilon_{i}(B^{0} \to J/\psi K^{*0}, L^{B}_{\text{prop}})}$$
(16)

•  $R_{i,\text{uncor}}(L^B_{\text{prop}})$  is then divided by  $R_{i,\text{eff}}(L^B_{\text{prop}})$  to obtain the corrected ratio  $R_{i,\text{cor}}(L^B_{\text{prop}})$ 



# **Production Asymmetry**

• The  $B^0$  production asymmetry  $A_p$  is measured from the charge asymmetry of the  $B^0 \to J/\psi K^{*0}$  decay, measured as a function of  $L^B_{\rm prop}$ 

$$A_{\rm obs} = \frac{N(J/\psi K^{*0}) - N(J/\psi \bar{K}^{*0})}{N(J/\psi K^{*0}) + N(J/\psi \bar{K}^{*0})}$$
(17)

- The charge asymmetry is has two main contributions:
  - The detector asymmetry  $A_{det}$
  - The production asymmetry A<sub>p</sub>, which should oscillate





## **Production Asymmetry**

The ATLAS results are

$$egin{aligned} A_{
m det} &= (+1.33 \pm 0.24 \pm 0.30) imes 10^{-2} \ A_{p} &= (+0.25 \pm 0.48 \pm 0.05) imes 10^{-2} \end{aligned}$$





# $\Delta \Gamma_d / \Gamma_d$ Results

- The corrected  $R_{i,cor}(L^B_{prop})$  is fitted by the expected number of events in each channel, in each bin
- Two separate results for the 2011 (7 TeV) and 2012 (8 TeV) datasets are

$$2011: \frac{\Delta\Gamma_d}{\Gamma_d} = (-2.8 \pm 2.2 (\text{stat.}) \pm 1.7 (\text{syst.})) \times 10^{-2}$$
  
= 2012:  $\frac{\Delta\Gamma_d}{\Gamma_d} = (+0.8 \pm 1.3 (\text{stat.}) \pm 0.8 (\text{syst.})) \times 10^{-2}$ 



# $\Delta \Gamma_d / \Gamma_d$ Results

The results from the two years are consistent and are combined

$$\frac{\Delta\Gamma_d}{\Gamma_d} = (-0.1 \pm 1.1 (\text{stat.}) \pm 0.9 (\text{syst.})) \times 10^{-2}$$

- The combined result is in agreement with the SM prediction
- It is also consistent with other measurements at other experiments performed by BaBar, Belle, and LHCb





## Conclusion

• The results of the  $B_s^0 \to J/\psi \phi$  analysis performed using data collected by ATLAS during RUN1 of the LHC are

 $\phi_{s} = (-0.098 \pm 0.084 ({\rm stat.}) \pm 0.040 ({\rm syst.})) ~{\rm rad}$ 

 $\Delta\Gamma_s = (0.083 \pm 0.011 ({\rm stat.}) \pm 0.007 ({\rm syst.})) ~{\rm ps}^{-1}$ 

- These results are consistent with the SM prediction and results from other experiments... but some room for new physics in CPV in this channel is still there
- The measurement of the  $B^0$  width difference is

$$\frac{\Delta\Gamma_d}{\Gamma_d} = (-0.1 \pm 1.1 (\text{stat.}) \pm 0.9 (\text{syst.})) \times 10^{-2}$$



This is currently the most precise **single** measurement of this quantity and is consistent with the SM expectation and results from other experiments

### References

- J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, Evidence for the 2 pi Decay of the k(2)0 Meson, Phys. Rev. Lett. 13 (1964) 138.
- [2] K. A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.
- [3] Y. Amhis et al. [HFAG Collaboration], Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2014, arXiv:1412.7515 [hep-ex] and online update at http://www.slac.stanford.edu/xorg/hf ag
- [4] A. Lenz and U. Nierste, Numerical Updates of Lifetimes and Mixing Parameters of B Mesons, arXiv:1102.4274 [hep-ph].
- M. Bona et al., Constraints on new physics from the quark mixing unitarity triangle, Phys. Rev. Lett. 97 (2006) 151803 [hep-ph/0605213].
- [6] G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.
- [7] G. Aad et al., Time-dependent angular analysis of the decay B<sup>0</sup><sub>s</sub> → J/ψφ and extraction of ΔΓ<sub>s</sub> and the CP-violating weak phase φ<sub>s</sub> by ATLAS, JHEP 1212 (2012) 072, arXiv:1208.0572 [hep-ex].
- [8] G. Aad et al., Flavor tagged time-dependent angular analysis of the  $B_s \rightarrow J/\psi \phi$  decay and extraction of  $\Delta\Gamma s$  and the weak phase  $\phi_s$  in ATLAS, Phys. Rev. D 90 (2014) 5, 052007, arXiv:1407.1796 [hep-ex].
  - G. Aad et al., Measurement of the CP-violating phase  $\phi_s$  and the  $B_s^0$  meson decay width difference with  $B_s^0 \rightarrow J/\psi\phi$  decays in ATLAS, arXiv:1601.03297 [hep-ex].



### References

- [10] R. Aaij et al., Determination of the sign of the decay width difference in the B<sub>s</sub> system, Phys. Rev. Lett. 108 (2012) 241801, arXiv:1202.4717 [hep-ex].
- [11] R. Aaij et al., Precision measurement of CP violation in  $B_s^0 \rightarrow J/\psi K^+K^-$  decays, Phys. Rev. Lett. 114 (2015) 4, 041801, arXiv:1411.3104 [hep-ex].
- [12] V. Khachatryan et al., Measurement of the CP-violating weak phase  $\phi_s$  and the decay width difference  $\Delta\Gamma_s$  using the  $B_s^0 \rightarrow J/\psi\phi(1020)$  decay channel in pp collisions at  $\sqrt{s} = 8$  TeV, arXiv:1507.07527 [hep-ex].
- [13] M. Aaboud et al., Measurement of the relative width difference of the  $B^{0}-\bar{B}^{0}$  system with the ATLAS detector, arXiv:1605.07485 [hep-ex].
- [14] C. Bobeth, U. Haisch, A. Lenz, B. Pecjak and G. Tetlalmatzi-Xolocotzi, On new physics in ΔΓ<sub>d</sub>, JHEP 1406 (2014) 040 doi:10.1007/JHEP06(2014)040, arXiv:1404.2531 [hep-ph].
- [15] T. Higuchi et al., Search for Time-Dependent CPT Violation in Hadronic and Semileptonic B Decays, Phys. Rev. D 85 (2012) 071105 doi:10.1103/PhysRevD.85.071105, arXiv:1203.0930 [hep-ex].



