

Studium radiační odolnosti stripových senzorů pro ATLAS Upgrade

ATLAS seminář Marcela Mikeštíková

5.5.2016 Fyzikální ústav AVČR

ATLAS Experiment na LHC

Stripový detektor SCT

SCT - schéma umístění SCT modulů ve válcové části a na 18 discích

SCT: Semi-Conductor Tracker

- přesné určování dráhy a impulsu vzniklých nabitých částic

61m² Si-stripových senzorů (*p***-na-***n*) s 6,2 mil. snímacími kanály 4088 křemíkových modulů válce : pokrytí rapidit $|\eta| < 1.4$ disky : pokrytí rapidit 1.1 to 1.4 < $|\eta| < 2.5$ 30cm < R < 52cm Prostorové rozlišení *rΦ* ~16µm / Z~580µm

FZU AVČR pro SCT ATLAS

- Vývoj stripových senzorů pro SCT a studium radiační odolnosti prvních prototypů
- Kvalifikační testy stripových sensorů typu *p*-na-*n*
- kvalifikační testy seriové produkce stripových senzorů pro SCT,
- celkem testováno přes 2500 senzorů (16% z celkového počtu)

FZU AVČR pro SCT ATLAS

• Vývoj a konstrukce nízkonapěťových zdrojů pro SCT

- nízkonapěťový zdroj pro SCT vyvinul Jan Šťastný (FZU)
- pro celý detektor SCT je vyrobila firma TTC Praha (celkem 4500 zdrojů).

Specifikace napětí pro SCT modul:						
Analogov	é 0-5,1V					
Digitální	0 – 5,1V					
VCSEL	0 – 6,6V					
PIN	0 – 10,5V					
2 logické	signály TTL					
2 I-zdroje	pro měření teploty SCT modulu					
Monitorování všech napětí a proudů						
Komunika	ace: CANbus					

• Vývoj napájení a chladícího systému EURO rámů a stojanů pro SCT

Ve FZU bylo vyvinuto napájení a architektura technické bezpečnosti systému EURO rámů a byl navržen chladící systém stojanů. (*J.Böhm, J.Šťastný, J.Hrivňák, E.Grunthálová, A.Mocová; J.Brož and P.Kubík (both from Charles Uni.).*

• Finální instalace napájecího systému SCT

V letech 2006-2008 byla pracovníky FZU provedena finální instalace napájecího systému pro 4088 detekčních modulů v podzemní hale USA15 a US15. CR (J.Böhm, J.Šťastný, J.Hrivňák, E.Grunthálová, A.Mocová; J.Brož and P.Kubík (both from Charles Uni.)

ATLAS stojan se čtyřmi EURO rámy, ve kterých jsou umístěny nízkonapěťové a vysokonapěťové zdroje. Celý napájecí systém SCT sestává z 88 EURO rámů ve 22 stojanech.

hlavním koordinátorem celé skupiny SCT napájecích zdrojů byl Jan Bohm

ATLAS SCT Performance

ATLAS pp 25ns run: August-November 2015										
Inner Tracker Calorimeters Muon Spectrometer Magnets										
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
93.5	99.4	98.3	99.4	100	100	100	100	100	100	97.8
All Good for physics: 87.1% (3.2 fb ⁻¹)										

Luminosity weighted relative detector uptime and good data quality (DQ) efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at $\sqrt{s=13}$ TeV between August-November 2015, corresponding to an integrated luminosity of 3.7 fb⁻¹. The lower DQ efficiency in the Pixel detector is due to the IBL being turned off for two runs, corresponding to 0.2 fb⁻¹. Analyses that don't rely on the IBL can use those runs and thus use 3.4 fb⁻¹ with a corresponding DQ efficiency of 93.1%.

Total Integrated Luminosity in 2015 (Run2)

Hit Efficiency

Leakage Current

od LHC k HL-LHC Ugrade Vnitřního detektoru ATLAS

Proč upgrade Vnitřního detektoru?

- zvýšení luminosity až 10x (10³⁵cm⁻²s⁻¹) v HL-LHC
- zvýšení "**pile-up**" z 20 na 200-300
- integrovaná luminosita až 3000fb⁻¹
- zvýšení radiačních toků na detektory
- Radiační poškození

 \Rightarrow

- současný pixel. detektor do $10^{15}n_{eq}/cm^2$
 - SCT detektor do 2x10¹⁴n_{eq}/cm²
 - \Rightarrow požadavek **radiační odolnost** pixelů do 2x10¹⁶n_{eo}/cm²
 - stripů do <mark>2x10¹⁵n_{ea}/cm</mark>²
- Occupancy
 - současný Vnitřní detektor nemůže účinně rozlišit dráhy při pile-up >200
 - TRT by dosáhl 100% occupancy (zahlcenosti)
 - současná vyčítací elektronika do 50 pile-up,
 - ⇒ požadavek jemnější granularity senzorů
 - \Rightarrow elektronika s rychlejším přenosem většího objemu dat

Run 1: vynikající výkon Vnitřního detektoru

Až 1000 drah na Δη = 1.0

Ztráta dat nad 3 x 10³⁴ cm⁻²s⁻¹
 objemy dat by zahltily vyčítací linku
 mezi ABCD FE čipem a vyčítací ROD kartou

Inner tracker layouts

- Current inner tracker
 - Pixels: 5-12 cm
 - Si area: 2.7 m²
 - IBL(2015): 3.3 cm
 - Strips: 30-51 (B)/28-56 (EC) cm
 - Si area: 62 m²
 - Transition Radiation Tracker (TRT): 56-107 cm
 - Occupancy is acceptable for <3x10³⁴ cm⁻²s⁻¹
 - Phase-II at HL-LHC: 5x10³⁴ cm⁻²s⁻¹

Inner Tracker (ITk)

- Phase-II upgrade (LOI) 2012
 - Pixels: 4-25 cm
 - Si area: 8.2 m²
 - Strips: 40.-100 (B) cm
 - Si area: 122 (B)+71(EC)=193 m²
- Major changes from LHC
 - All silicon tracker
 - Large increase of Si area
 - both in Pixels and Strips
 - ~ 3 × LHC ATLAS

2016 nový layout – změny od LoI:

Válce: $4 \rightarrow 5$ pixelových vrstev

 $5.1 \rightarrow 4$ stripové vrstvy

Disky: $7 \rightarrow 6$ stripových disků

Radiační úrovně v ITk

K. Hara, HSTD10, Xi'an China, 25-29 Sep 2015

Stripový detektor

Design stripových senzorů pro ITK

• *n*-in-*p*

- tloušťka 300-320 µm
- nosič náboje: elektrony

Válcový senzor

- velikost: 9.79 cm x 9.76 cm
- rozteč 75.5 μm, 1280 stripů
- 2 tvary senzorů:
 délka stripů ~24 a ~48 mm
- úhel stripů +/- 26mrad

Diskový senzor

- -vějířové uspořádání stripů
 -stripy nesměřují do středu, ale jsou otočeny
 o malý ůhel k zísání 2. souřadnice průletu
- 6 různých tvarů senzorů
 délka stripů 15-60mm

Rozměry stripů voleny aby "hit occupancy" <1%

Výběr typu senzoru pro Upgrade

Senzor (p-in-n) v současném SCT

(po inverzi Si typu n na p)

Radiační poškození vytváří v Si energetické úrovně akceptorového typu => změna Si typu *n* na typ *p*

Senzor (n-in-p) pro Strip ITk Upgrade

• ~50% levnější než *n*-in-*n*

 FzU je členem mezinárodní skupiny "ATLAS ITk Strip Sensor Collaboration", která vyvinula ve spolupráci s HAMAMATSU Photonics (Japan) nový radiačně odolný stripový senzor typu n⁺-in-p vhodný pro radiační úrovně v ITk na HL-LHC

- •<u>Senzor</u>:
- *n*⁺ in *p* (FZ) <100>
- kapacitně vázané n-stripy s vyčítacími stripy
- n-stripy biasovány přes polysilikonové odpory
- hlavní sensor (9.75cmx9.75cm) obklopen mini senzory
- rozteč 74.5 μm, 1280 stripů ve 4 segmentech
- společná p-stop izolace (4e12 ions/cm²)

Verze ATLAS07:

o 6 typů různých izolací n-stripů

o popis vlastností velkoplošného senzoru a ozářených mini senzorů

ve 4 článcích v Nucl. Instr. and Meth. A636 (2011)

spoluautoři z FzU AV: J. Bohm, M. Mikestikova

Verze ATLAS12:

New features from 07 design:

- $\circ~$ implementation of 2 dicing lines
- $\,\circ\,$ a new gated PTP structure in main sensor
- $\circ~$ bonding pads modified for the new ASIC readout
- $\circ~$ end-cap mini sensors for irradiation studies

Diskové mini senzory

ATLAS12A Wafer Layout

Main sensor at the center of the wafer

1-24 Baby sensors in the peripheral of the main sensor

[Y. Unno et al. Nucl. Instr. Meth. A765 (2014) 80-90]

ATLAS12 sensor evaluation program

> Ověřování vlastností senzorů ATLAS12 před a po ozářením v několika světových institutech

- Large Sensors before irradiation (Cambridge, UCSanta Cruz), B. Hommels
 - sensor shape, IV, CV, Inter-strip characteristics
 - Full strip tests
- Bulk radiation hardness (Ljubljana, Liverpool, KEK/Tsukuba, Freiburg, Valencia, Cambridge), K. Hara
 - Charge collection, Edge TCT (Transient Current Technique)

Surface radiation studies (Prague, UCSC, Freiburg, Lancaster, Tsukuba), M. Mikestikova

- o Cinter, Rinter, PTP
- Forward sensor studies (Valencia, Freiburg), R. Mori
 - Laser scans, Strip ganging performance
- Embedded pitch adapters (Barcelona), M. Ullan

Ozařování prováděno do dvojnásobné maximální fluence očekávané v ITk (2x10¹⁵ n_{eq}/cm²) různými částicemi a energiemi

Irradiation for surface studies

- ATLAS12A end-cap and barrel mini sensors irradiation:
 - o gammas (60Co) at BNL and UJP Prague to 1MGy
 - o protons (27 MeV) at Birmingham, UK
 - o (25 MeV) at Karlsruhe Inst. Tech., DE
 - (70 MeV) at CYRIC, Tohoku University, JPN

 \circ **neutrons** – JSI Ljubljana reactor, SLO: fluences 1E15 n_{eq}/cm²

• ATLAS12A, A12M and A07 barrel mini sensors irradiation (for comparison):

 \circ protons CYRIC, fluences 1E14- 1E16 n_{eq}/cm²

Barrel TYPE	РТР	FDV [V]	Dicing cut	Strip isolation
ATLAS12A	С	~350	standard (950µm)	p-stop 4E12
ATLAS12A	F	~350	standard	p-stop 4E12
ATLAS12M	С	~225	slim (450µm)-inner cut	p-stop 4E12
ATLAS07	F	~200	standard	p-stop 4E12

fluences 1E12- 1E16 n_{eq}/cm²

Electrical tests of irradiated ATLAS12 mini sensors

~200 mini sensors of different types tested for surface studies in:

- IoP AS, Praque (Řešitelský tým z FzU: M.Mikeštíková, J. Šťastný, Z. Kotek, od 2015 J.Kroll)
- UC Santa Cruz
- U. Tsukuba
- U. Freiburg
- Lancaster U
- IFIC Valencia
- IV (current, breakdown voltage)
- Inter-strip Capacitance (C_{int})
- Inter-strip Resistance (R_{int})
- Stability measurements
- Bias Resistance (R_{bias})
- Punch-through Protection (beam loss protection) effectiveness (PTP)

Measurement conditions:

- Sensors bonded to PCB board and tested in freezer (up to -50°C) or in probe station with cooled chuck (up to -30°C)
- Nitrogen environment (humidity < 10%)

Silicon lab in IP ASCR Prague

Semi-Clean room (24 m²)

- with temperature and humidity control, vertical air flow,
- electrically conductive flooring

Laboratory Equipment of silicon lab in IP ASCR Prague For Sensors tests

Automatic probe station KarlSuss PA200 equipped with probe heads with vacuum and magnetic support, microscope, video camera and monitor

Manual probe-station with cooled chuck (-30°C) Nitrogen flow in probe-station, humidity < 5%

Measuring devices:

LCR meter HP4284A
SMU Keithley 237
HP34401A multimeter
Picoammeter Keithley 487
Electometer K6517A
HV Supply K248 up to 3000V

Total Leakage Current: Pre- and post proton and gamma irradiation ATLAS12 mini sensors

Non-irradiated:

- Very low current I = 4.8 ± 1.5 nA/cm² (average of 28 EC minis)
- Tech. spec. < 2µA/cm² (600V)
- Breakdown voltage > 600/1000V

Proton-irradiated:

- I = 114 $\mu A/cm^2$ for 2E15 n_{eq}/cm² (-10°C)
- Breakdown voltage > 1000V

Gamma-irradiated:

- 100 x current increase
- The higher the gamma dose the lower the current subject of further studies.

All type of EC and barrel sensors before and after irradiation have a high micro-discharge breakdown, well above the maximum operational voltage (500V).

Sensor stability not influenced by:

- PTP structure type,
- strip pitch,
- strip ganging,
- wafer.

CV characteristics for Full depletion voltage (FDV) estimation

FDV extracted from CV characteristics as crossing of the part of rising straight line of $1/C^2$ and the saturated value Non-irradiated:

- FDV = 354±20 V (average value of 28 EC mini's)
- Resistivity: $\rho = 2.8 \pm 0.15 \text{ k}\Omega^*\text{cm}$, calculated from: $\rho=d^2/(2\epsilon^*\mu^*V_{FD})$, d = 302 μ m is active thickness

Protons:

- FDV increases with increasing fluence
- little variation at low fluence FDV decreases up to 1E14 n_{eq}/cm² (hypothesis: initial acceptor removal process in p-type Si)
- FDV > 1000V for 3E15 and 1E16 n_{eq}/cm² (expected for 302 μm silicon)

<u>Gamma:</u>

 FDV and thus effective doping concentration (N_{eff}) are independent on gamma irradiation.

The operational voltage in ITk will be max 500V, n-in-p sensors will be operated under partial depletion

Inter-Strip Capacitance

- C_{int} contributes to the input capacitance of FE electronics and determines the noise level of the detector
- C_{int} measured by LCR meter between the central strip and its first neighbors (others floating)
- next 2nd and 3th neighbors add ~10%

ATLAS12A	Average pitch [μm]	C _{int} /cm [pF] 100kHz, CPRP
Barrel mini	74.5	0.76±0.02
EC Small pitch	64.3	0.79±0.01
EC Large pitch	103.4	0.55±0.01
EC Skewed	69.4 S2 66.1 S1	0.74±0.01 0.76±0.01

average values of 25 sensors (Freiburg, Prague, Santa Cruz and Tsukuba)

All tested sensors : C_{int} <0.85pF/cm (Spec. <0.9pF/cm)

- no radiation induced change of $\rm C_{int}\, at\, V_{bias}$ above FDV
- no PTP type dependence
- no wafer type dependence

Inter-Strip Resistance

* not annealed samples

-1200

Rint measurements - verification of neighboring strips isolation Measuring method:

• 3 adjacent DC pads are contacted. On the central strip is applied voltage V_{appl} by SMU, the current is measured on the outer strips.

1 ^{_}

-200

-400

-600

Vbias [V]

-800

-1000

Summary for not irradiated sensors:

- $R_{int}/strip = 18-78 G\Omega$
- Values in G range agree with Spec: $R_{int}{>}15 M \Omega$
- Rint is independent on Vbias

Proton irradiated sensors:

R_{int} decreases with increasing fluence and increases with bias voltage

Bias field reduces conductivity between strips

Temperature dependence of R_{int}

- Inter-strip resistance of irradiated sensors is temperature dependent
- Inter-strip current has the same temperature dependence as bulk generation current
- all R_{int} data in this talk are normalized to -20°C $R(T_{-20})=R(T_M)*(T_{-20}/T_M)^2*exp[-E/2k_B*(1/T_{-20}-1/T_M)]$

with energy E=1.2eV

Inter-Strip Resistance – Irradiated sensors

- R_{int} decreases with increasing fluence
- All sensor types A12A/A12M/A07 same degradation with proton fluence
- No influence of PTP structure type

1.E+07

- R_{int} values exceed the minimum limit ($10xR_{bias} \approx 15 M\Omega$) required in specs up to $3x10^{15} n_{eo}/cm^2$
- Up to $1x10^{16} n_{eq}/cm^2 R_{int}$ still larger than the amplifier's input impedance (k Ω)

- Total Ionizing dose (TID) vs R_{int}
- Most sensors have similar degradation of R_{int} with TID (except samples from Birmingham 2013 campaign – low energy proton background)
- Suggesting the ionizing dose is the dominant factor for R_{int}

Annealing of R_{int} at 60°C

Karlsruhe proton irradiation

Annealing of Leakage current

- At low V_{hias} current decreases in time
- At high V_{bias} current increases with annealing due to charge multiplication (CM)
- With annealing time the space charge concentration rises and higher electric field near strips causes CM [I. Mandic, NIMA629 (2011) 101]
- With longer annealing time multiplication starts at lower bias voltages

Annealing of Inter-strip resistance

- R_{int} increases with annealing time significantly as the leakage current decreases
- Annealing 5000 min causes R_{int} increase to pre-rad value but the leakage current is still 4 orders of magnitude higher then before irradiation

R_{int} vs annealing time

Stability measurements

Current Stability – A12A EC ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG -1.8E-05 -1.6E-05 -1.4E-05 -1.2E-05 W644_EC_large_E_P10_2E15 I [A/cm2] W645_EC_skewed_C_P01_1E15 -1.0E-05 W644_EC_skewed_E_P02_5E14 -8.0E-06 W642 EC large E P10 5E14 -6.0E-06 -4.0E-06 -2.0E-06 T=-25°C 0.0E+00 5 10 0 15 20 Time [hours]

CYRIC proton irradiation

B'ham proton irradiation

• Current: Relatively small decrease ~3% in 16 hours (some sensors)

Agrees with previous studies with SCT sensors

after annealing 80min at 60°C

Leakage current, Cint and Rint are stable in time

Measurements at cold, rel. humidity <10% (N2 flow)

- Cint changes copies the temperature changes
- Instabilities in R_{int} are not caused by instabilities in sensor but in set-up (e.g. external electromagnetic disturbance of measuring devices)

Karlsruhe proton irradiation

T=-20°C

90000

80000

23 hours

Punch – Through Protection Structure

PTP structures: to protect the AC coupling capacitors against large signal current, induced for example by beam splash

PTP designs

PTP - Structure dependence

筑波大学

Very good performance of "C" type (full gate) structure also after proton irradiation:

steep increase in current

PTP onset voltage [V]

0

-10

-20

-30

-40

-50

-60

-35

-30

-25

-20

-15

-10

-5

0

V_{PTP onset} < 25V

PTP onset voltage [V]

- small PTP onset voltage (~20V)
- largest current at V_{PTP}=-100V.

2.5mA=2.5mC/s= 6e11 mips/s/strip

PTP: ATLAS12M, HV:-1000V & Fluence: 0.98e15

The novel full gate PTP structure "C" doubles the allowable current without increasing the onset voltage.

Surface studies conclusions

Surface properties of ATLAS12 n⁺-in-n strip sensors intended for upgraded ATLAS Itk fabricated by Hamamatsu were evaluated by several participating institutes before and after irradiation to verify if they can cope with predicted high radiation environment:

- **High micro-discharge breakdown >** the maximum operational voltage (before and after irradiation)
- Interstrip capacitance < 0.9pF/cm and does not change with irradiation
- Interstrip resistance decreases with proton and gamma irradiations
 - is temperature dependent and changes with annealing, both through leakage current
 - however for HL-LHC fluences the strip isolation is sufficient
- **Bias resistance** slightly increasing with proton fluence, agrees with specs up to fluence 3E15n_{eq}/cm²
- **Punch through protection** is efficient after irradiation 2E15n_{eq}/cm².

ATLAS12 sensor shows appropriate performance for operation in ATLAS Upgrade ITK

	Pre- radiation	Protons 1×10 ¹⁵ [n _{ea} /cm ²]	Protons 2×10 ¹⁵ [n _{ea} /cm ²]	Gamma 100kGy
Leakage current [µA/cm ²] (at V _{bias} =600V)	<0.0048 (+20°C)	51 (-10°C)	103 (-10°C)	0.22 (+20°C)
Inter-strip capacitance [pF/cm] (at 1MHz)	0.75-0.82	0.82	0.82	0.77
Coupling Capacitance [pF/cm] (at 1kHz)	24	24	24	-
Inter-strip resistance [GΩ/cm] (at V _{bias} =400V)	15-65 (+20°C)	0.5-2.2 (-20°C)	0.3-0.7 (-20°C)	0.0086 (+20°C) 0.6-1.1 (-20°C)
Bias resistance [MΩ]	1.5±0.1 (+23°C) 1.7-1.8 (-10,-20°C)	2.0 (-20°C)	2.1 (-20°C)	1.7 (+23°C)

Výsledky studia radiační odolnosti Prezentace a publikace

- **10th Hiroshima symposium on the Development and Application of Semiconductor Devices, Xian, China, 2015**: *"Study of surface properties of ATLAS12 Strip Sensors and their Radiation Resistance",* (<u>M. Mikeštíková</u>)
- **RD50 workshops** 2013, 2014, 2015 (Radiation hard semiconductor devices for very high luminosity colliders), <u>M. Mikestikova</u>, Z.Kotek, J. Šťastný:
- Strip Sensor meetings, Vidyo Meetings
- Inner Tracker weeks, CERN
- ATLAS Upgrade weeks, CERN

Publikace:

- *M.Mikeštíková, J. Šťastný, Z. Kotek:* Evaluation of Bulk and Surface Radiation Damage of Silicon Sensors for the ATLAS Upgrade, PoS Vertex2014 (2015) 050, Conference: C14-09-15.2 Proceedings
- *M. Mikestikova, ...J.Bohm, J.Stastny, Z.Dolezal, P.Kodys:* **Study of surface properties of ATLAS12 strip sensors and their radiation resistance,** *NIMA(2016) In Press*
- B. Hommels, Z.Dolezal, P.Kodys, J. Bohm, M.Mikestikova, J. Stastny: Detailed studies of full-size ATLAS12 sensors NIMA(2016) In Press
- *K.Hara, Z.Dolezal, P.Kodys, J. Bohm, M.Mikestikova:* Charge collection and field profile studies of heavily irradiated strip sensors for the ATLAS inner tracker upgrade *NIMA*(2016) *In Press*
- R. Mori, ... Z.Dolezal, P.Kodys, J. Bohm, M.Mikestikova, J.Stastny: Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade upgrade NIMA(2016) In Press
- *M.Ullan, ... Z.Dolezal, P.Kodys, J. Bohm, M.Mikestikova:* **Embedded pitch adapters: A high-yield interconnection solution for strip sensors** *NIMA*(2016) *In Press*
- *Y.Unno, ... Z.Dolezal, P.Kodys, J. Bohm, M.Mikestikova:* **Development of n⁺-in-p large-area silicon microstrip sensors for very high radiation environments – ATLAS12 design and initial results,** NIMA765(2014)p.80

Laser a beta testy ITk testovacích stripových modulů

Jiří Kroll ve spolupráci s MFF UK (Z. Doležal, P. Kodyš, M. Sýkora)

Laser setup

Pulse Shape Laser Scan in fC, RunNo 358, ScanNo 1, Strip 796

Beta source testy

Treshold scan

Clustersize distribution for bias_400V_1500trg

Plány

V rámci projektu ATLAS Itk Upgrade Phase II se Česká Republika zavázala dodat cca 1100 diskových stripových modulů. FZU se bude na tomto závazku významně podílet zejména v oblastech:

- 1. Testování velkoplošných stripových senzorů (tzv. QA quality assurance)
- 2. Implementace metodiky sestavování modulů (modul = senzor + hybrid + ASICs)
- 3. Testování kvality sestavených modulů (QA)
 - Metrologické vlastnosti
 - Termomechanické vlastnosti
 - Elektonické vlastnosti

1. Testování stripových senzorů

Testování velkoplošných diskových senzorů - QA

- Testy na 100% senzorů (ve FzU cca1100):
 - vizuální kontrola pod mikroskopem (defekty, poškrábání)
 - zkřivení senzoru
 - IV charakteristiky
- Testy na cca 5-10% senzorů (ve FzU až 110)
 - Detailní testování všech stripů –
 vazebná kapacita, svodový proud, bias rezistor..

- Felder	1971 (S. 1991	Sole Parts	Construction of the second
E GARDEN	-		
000000			CHEMIC
		103) (FER.104	
			Balance B
1008020			
1005078			
52200			
- Desizion			
900000		1251	
Destance	Contraction of California		Commondation

- 1 diskový senzor počet stripů v závislosti na typu senzoru např. RO senzor: 4360stripů
- Detalní testování všech stripů jednoho senzoru metodou strip-by-strip trvá cca 12 hodin!
- → zkrácení doby testování pomocí 32 bodové sondy (~2.5hod)

→ zakoupení nutných komponent do automatické stanice a vytoření softwaru pro ovládání automatického posuvu

(Řešitelský tým M. Mikeštíková, J.Kroll, Z. Kotek, O. Korchak)

1. Testování stripových senzorů

Nutné komponenty k pořízení pro automatické testování s 32 bodovou sondou:

- Switch unit crate
- HighVoltage 12x4 switch matrix
- USB-GPIB adapter
- 2x dual 8:1 multiplexer units
- Probecard holder for probestation
- Probecard low leakage, 32 channel + edge sense

Vybudování čistého prostoru kolem probestation

32 bodová sonda v Cambridge Uni

Pokud se chce FZU kvalifikovat pro proces testování stripových senzorů, je nutné prokázat dostatečnou čistotu testovací laboratoře (ISO 7, třída10000)

Řešení:

- Předělení čistého prostoru měření systémem překrývajících se PVC lamel.
- Pořízení laminárního flow- boxu

Testování prvních velkoplošných prototypů ve FZu

2009 – 2010:

- testování elektrických charakteristik prvních prototypů (verze ATLAS07) válcových senzorů (10x10cm)
- kvalifikační testy před ozářením.

Z článku:

J. Bohm, M. Mikestikova, A.A. Affolder, P.P. Allport, ...

Z. Dolezal, P.Kodyš, et al.

Evaluation of the bulk and strip characteristics of large area n-in-p silicon sensors intended for a very high radiation environment, NIM A636,S104-S110,2011

2. Metodika sestavování modulů

Hlavní koordinátor Jiří Kroll

Příprava na sestavování ITk stripových modulů na FZÚ

 kompletní setup pro testování lepení ITk stripových modulů byl připraven na FZÚ (Zdeněk K., Jiří K., Marcela M.)

2. Metodika sestavování modulů

Příprava na sestavování ITk stripových modulů na FZÚ

detail vybraných komponent

Jigy pro sestavování modulů

Made by Zdeněk Kotek

2. Metodika sestavování modulů

Příprava na sestavování ITk stripových modulů na FZÚ

• detail vybraných komponent

Made by Zdeněk Kotek

イロン (空) (注) (注) [

Jsme připraveni testovat sestavování modulů

3. Elektronické testování modulů

 Vyčítání modulu pomocí ATLYS karty (PMOD-TTC, VMOD-IB)

Děkuji za pozornost

Polysilicon Bias Resistance: Pre and post proton and gamma irradiation

- R_{bias} is slightly increasing with proton fluence and gamma dose
- \bullet A12A has slightly higher initial $\rm R_{bias}$ than A12M and A07, s well within the spec

 R_{bias} agrees with specs up to proton fluence $3E15n_{eq}/cm^2$ and gamma dose 1MGy

Sensor parameters from electrical tests

- ATLAS12A proton and gamma irradiated
- Inter-strip values for strip pitch 74.5 μm (barrel)
- for 1cm strip length

	Before irradiation	Protons 1E15n _{eq} /cm²	Protons 2E15n _{eq} /cm ²	Gamma 10MRad
Inter-strip capacitance to neighbor pair, other	0.76±0.02 pF/cm (@100kHz)			
floating	0.75-0.82pF/cm (@1MHz)	0.82	0.82	0.77
Coupling capacitance at 1kHz	24 p F/cm	24	24	
Strip to back plane capacitance	0.31pF/cm (of depleted sensor)			0.3 1
Bias resistor	1.5±0.1 MΩ (+23°C) 1.7 -1.8 (-10°C,-20°C)	2.0 (-20°C)	2. 1 (-20°C)	1.7 (+23°C)
Leakage current per 1 cm strip		210 nA (-15°⊂)	41 6 (- 1 5℃)	

Strip meeting Dec16, 2015

- 3
- Hodnoty parametrů naměřených ve Fzu jsou používány pro stanovení specifikací pro vyčítací čipy ASIC senzorů v Itk. Strip sensor inputs to ABC130* ASIC specs

Inter-strip capacitance scaling for end-cap strip geometry (for all rings and rows)

Geometry of end-cap strip sensors taken from Petal sensors Twiki pages:

https://twiki.cern.ch/twiki/bin/view/Atlas/PetalSensors

petal.xlsx file

35	ring	row	length	pitch_i	pitch_o	pitch_avrg	C2 [pF/cm]	C2[pF]/strip
36			[mm]	[um]	(um)	d2 [um]	with f=1.12	with f=1.12
37	0		104.966					
38		0	19.011	75.387	79.109	77.248	0.84	1.59
39		1	23.962	79.123	83.815	81.469	0.80	1.93
40		2	28.913	74.528	79.562	77.045	0.84	2.42
41		3	31.883	79.574	85.124	82.349	0.80	2.54
42	1		85.767					
43		0	24.121	69.542	72.962	71.252	0.89	2.14
44		1	18.165	72.972	75.548	74.260	0.86	1.56
45		2	21.143	75.556	78.553	77.055	0.84	1.77
46		3	21.143	78.563	81.561	80.062	0.81	1.72
47	2		63.581					
48		0	31.255	74.768	78.820	76.794	0.84	2.62
49		1	31.255	78.829	82,881	80.855	0.81	2.52
50	3		117.599					
51		0	29.101	72.008	75.278	73.643	0.87	2.52
52		1	29.101	75.286	78.556	76.921	0.84	2.44
53		2	29.101	78.562	81.832	80.197	0.81	2.36
54		3	29.101	81.840	85.110	83.475	0.79	2.30
55	4		109.980					
56		0	54.455	74.325	79.658	76.991	0.84	4.56
57		1	54.455	79.665	84.998	82.331	0.80	4.34
58	5		101.346					
59		0	50.138	75.480	79.833	77.656	0.83	4.17
60		1	50.138	79.839	84.191	82.015	0.80	4.01
61								

$$C_2 = f \cdot \ln(d_1/a) / \ln(d_2/a) \cdot C_1$$

- C₁- the capacitance measured
- d₁ the average pitch of the measured sensor (EC mini sensor)
- C_2 the scaled capacitance for the d_2 pitch
- d₂ average of pitch_i and pitch_o
- f = 1.12 (from ATLAS specs)

Cint max for max strip length

Inter-strip capacitance does not change after proton and gamma irradiation (for more information see backup).

6

 Hodnoty parametrů naměřených ve Fzu jsou používány pro stanovení specifikcí pro vyčítací čipy ASIC senzorů v ITk.

Quality assurance - Lab requirements

1 - Sensors (Bart + Kristin)

Step No	Name & Deception	Equipment Needed	QA Specs			
1	 Arrival Unpacking? Storage of components 	Storage Cabinets (if not packaged)	Humidity <5%			
2	 Visual Inspection Check for scratches, broken edges, dust etc. Check edge chip spec: no chips or cracks 	Optical Microscope with automated inspection software	'Nice and Clean sensor'			
3	Metrology SurveyXY geometryZ profile	Optical (non contact) CMM	Total Bow <200µm			
4a	I-V	 Probe Station with N₂/humidity control/chiller Sensor held on jig using clamps (not vac) in dry conditions (N₂) 	 0-800V in 10v steps with 10s interval I < 200µA (as spec) No onset of micro-disharge T = Normalised to 20°C 			
4b	C-V	As Above	0-800V in 10v steps with 5s interval T = Normalised to 20°C			
Andy Blue ITK Week - Feb 2015						

Quality assurance - Lab requirements

1 - Sensors (Bart + Kristin)

Step No	Name & Deception	Equipment Needed	QA Specs
5a	Full Strip Test	 Probe Station Multichannel probe card	Starts at 5-10%Reduce to 1-2%
5b	Additional Tests • PTP, C _{INT} , R _{INT}	Probe Station	Same sensors as 5a
7	DatabaseSensor is registeredData uploaded	PC / Laptop	
8	DecisionGrading of Sensor is made		Good, Pass, Hold or Fail

Výsledky měření sběru náboje

S/N at HL-LHC

Barrel short (24mm)strips up to : 1.1 x 10¹⁵ /cm² Barrel long (48mm) strips up to : 0.6 x 10¹⁵ /cm² Endcap (8-48mm) strips: max 1.6 x 10¹⁵ /cm²

ENC noise ~550/720/650 ENC for barrel short/barrel long/EC innermost strips

K. Hara, HSTD10, Xi'an China, 25-29 Sep 2015

- Mini sensors irradiated by neutrons and protons
- Charge collection measured with ⁹⁰Sr beta-source
- CC of >9ke⁻ can be maintained at V_{b} =500V after 1.6x10¹⁵n_{eq}/cm²

