Searching for active and sterile neutrinos in β-ray spectra

Otokar Dragoun Nuclear Physics Institute ASCR, Řež near Prague Supported by the GACR, P203/12/1896

Division of Elementary Particle Physics, Institute of Physics ASCR, 28.4.2016

Topics

- 1. Electron spectroscopy at NPI
- 2. Methods for m_v determination
- 3. m_v from β -spectroscopy
- 4. KATRIN experiment
- 5. New approaches
- 6. Sterile neutrinos
- 7. Perspectives

1. Electron spectroscopy of radioactive nuclei at NPI

1955 –1990: for structure of the atomic nucleus 1990 – now: for neutrino mass determination

First Czechoslovak β-ray spectrometer (1956)

Magnetic β-ray spectrometer. One of the first Czech instruments operated by a computer (1971)

Internal conversion electrons $E_{ce} = E_v - E_{bin}$ Elektrostatic spectrometer of keV electrons (1983)

best resolution $\Delta E \le 1 \text{ eV}$ at low transmission

Examples of our measurements and calculations

Conversion electrons of elmag. transitions in ¹⁹⁹Hg

First extensive calculations of internal conversion coefficients for outer atomic shells MC calculations of individual elastic and inelastic scattering of electrons in radioactive sources

Next examples of our measurements

2. Methods for m_v determination

$$\left| \boldsymbol{\nu}_{\alpha} \right\rangle = \sum_{1}^{n} \boldsymbol{U}_{\alpha i} \left| \boldsymbol{\nu}_{i} \right\rangle$$

$$m_{\nu_{\alpha}} = \sqrt{\sum_{1}^{3} \left| U_{\alpha i} \right|^2 m_i^2}$$

• Two body decay at rest:
$$\pi^+ \rightarrow \mu^+ + \nu_{\mu}$$

 $\sigma_r(\pi) = 3 \cdot 10^{-6}, \ \sigma_r(\mu) = 5 \cdot 10^{-8}, \ \sigma_r(p_{\mu}) = 4 \cdot 10^{-6}$

$$m_{\nu_{\mu}}^2 = -(0.016 \pm 0.023) \text{MeV}^2$$
 $m_{\nu_{\mu}} \le 190 \text{ keV}$

$$E_{\rm tot}^2 = p^2 + m^2$$

Effective masses due to insufficient

instrumental resolution

P Neutrino oscillations:
$$m_2^2 - m_1^2 = (7.50 \pm 0.20) \times 10^{-5} eV^2$$

 $|m_3^2 - m_2^2| = (2.32 \pm 0.12) \times 10^{-3} eV^2$

$m_1 < m_2 < m_3$	$m_3 < m_1 < m_2$
m ₁ ≥ 0	m ₁ ≥ 48 meV
m₂ ≥ 8 meV	m₂ ≥ 49 meV
m₃ ≥ 49 meV	m ₃ ≥ 0

β-ray spectroscopy:
$$m_{v_e} = \sqrt{\sum_{1}^{3} |U_{ei}|^2 \cdot m_i^2}$$
 < 2 eV

• Time-of-flight : SN 1987A

d = 168 000 ly, $t_{\gamma} = 5 \cdot 10^{12}$ s Observed ≈ 20 v within $\Delta t \approx 10$ s Assuming $\Delta t_{SN} = 0$: $m_{v_e} \le 20 \text{ eV}$

BUT $\Delta t_{SN} > 0$ including assumptions $m_{\nu_e} \le 5.7 \text{ eV}$ on SN dynamics

• **Ονββ-decay:**
$$m_{\beta\beta} = \left| \sum_{1}^{3} m_{k} \cdot \left| U_{ek} \right|^{2} \cdot e^{i\phi(k)} \right| < (0.2 - 0.7) \text{ eV}$$

• **Cosmology**:
$$\sum_{1}^{3} m_i < (0.12 - 1.7) \text{ eV}$$

JCAP 11(2015)011

Effective neutrino mass from 0vββ decay

Indirect method depending on nuclear models

 $\bar{\nu}_{\rm e} = \nu_{\rm e}$

3. m_v from β -spectroscopy

Theory of β-decay assuming existence of both neutrino of W. Pauli and weak interaction (*E. Fermi, 1934*):

From $m_{\nu_{\alpha}} < 5 \text{ keV to } m_{\nu_{\alpha}} < 2 \text{ eV}$

1948: β-spectrum of ³⁵S

Cook et al. Phys. Rev. 73,1395.

Iron magnetic β-ray spectrometer $r_0 = 40$ cm, source 0.4 x 2.5 cm² ΔE_{instr} = 1.5 keV at E = 167 keV

 $\Omega/4\pi = 1.10^{-3}$

Kurie plot ($Q_{\beta} = 167 \text{ keV}$)

2005: β -spectrum of ³H

Confirmed at NRI Troitsk in 2011

Kraus et al. Eur. Phys.J. C40,447

MAC-E filter at Mainz Uni. Now: KATRIN monitor spectrometer

4. KATRIN experiment

The tritium β-decay experiment aiming at 0.2 eV v-mass sensitivity

Tritium laboratory at KIT: 10 kg/year of high-purity tritium scale equivalent to ITER fusion plant Founded in 2001 by physicists from Germany, Russia, USA and Czech Republic

Our NPI: precision electron spectroscopy of radionuclides

 $E_{ce} = E_{\gamma} - E_{bin}$

ΔE_{FWHM} < 1 eV but low transmission KATRIN main components:

Tritium source

A =10¹¹ Bq, **B** = 3.6 T, **T**= 30K±0.1% 6 cryogenic liquids, 500 sensors

≤ 1 mBq of tritium inside the main spectrometer

Differential pumping section

Test of sc magnets at 5.5 T

Rejects all β-particles bearing no information about neutrino mass

23 m length, 10 m diam, 200 ton

Electron tracks:

a) $E > e \cdot U_{max}$ c) $E < e \cdot U_{max}$ b) electron released inside spectr.

and magnetically trapped !

Focal plane detector

Our task for KATRIN : monitor high voltage stability ± 60 mV at 18.6 kV in 2 months

KATRIN expected result

after 1000 days of measurement, 5-6 calendar years:

5. New approaches

Low-temperature microcalorimeters

- \bullet $\beta\text{-emitter}$ fully contained $% \beta$ in the absorber
- all Q_{β} (except v energy) transferred into heat

No troubles with

- electron energy losses
- final states after β-decay

Project 8

Spectroscopy of cyclotron radiation emitted by tritium decay electrons in a magnetic field

$$\omega = \frac{e B}{m_e \left(1 + \frac{E}{m_e c^2}\right)}$$

792 22 20 790 (linear) 780 778 2 5 0 1 3 4 Time (ms) Single electron detection proved

E = 18.6 keV B = 1 T $f = \omega/2\pi = 26.5$ GHz (λ = 1.1 cm)

Aiming at atomic tritium experiment with v-mass sensitivity < 0.06 eV to reach IH

MC simulation: B uniformity 0.1 ppm 1 K temperature (Doppler effect) 10¹² tritium atoms/cm³ background 10⁻⁶ s⁻¹ eV⁻¹

For further proposals see e.g. the review in *arXive* 1504.07496

6. Sterile neutrinos

Shrock (1980):

- search for mass states m_i in β -spectra
- the kink at $E_0 m_i$ with amplitude $|U_{ei}|^2$
- $|U_{e4}|^2 < 0.1$ for 0.1 keV $\le m_4 \le 3$ MeV

An admixture of the 17 keV neutrino in β -ray spectra

The best upper limits on the admixture $|U_{e4}|^2$ of sterile neutrinos

Derived from measured β-ray spectra

- 1 ³H, MAC-E-Filter
- 2 ³H, MAC-E-Filter
- $3 {}^{187}$ Re, low-temp. calorim.
- $4 {}^{3}H$, magn. spectr.
- $5 {}^{3}H$, implant. in Si(Li) spectr.
- 6 ⁶³Ni, magn. spectr.
- 7 ⁶³Ni, magn. spectr.
- $8 {}^{35}S$, Si(Li) sp. + magn. colim.
- 9 ⁶⁴Cu, magn. spectr.
- $10 {}^{20}F$, magn. spectr.

 $|U_{e4}|^2$ < 4 ·10⁻³ for $m_4 = 2 - 40$ keV < 5 ·10⁻⁴ for $m_4 = 14 - 20$ keV

MC simulations for KATRIN:

- highly sensitive to m_4 in **eV** range
- sensitive also in **keV** range

(electron energy losses in tritium source!)

7. Perspectives

Current problems of neutrino physics

