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The three roads to hep-th:

1. give-up reality ®

2. use hep-th as a maths tool to describe real
world physics  mmp
3. use real world physics as a physics tool to test

hep-th =

This talk is about the third road



- Anderson SSB and Higgs
- Cosmology in the lab
- Acoustic BHs

- Unruh at CERN

Open hep-th questions can be answered by low
energy experiments

Today's example: graphene and BHs



1. Black holes, doors to hep-th

With the escape velocity argument
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we can explain the “black”




BHs are no longer science fiction (only)
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M. Possel, Einstein Online 2 (2006) 1020.



That is not the end of the story, but perhaps a beginning
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Once we have temperature we have a whole thermodynam-
ics, in particular we have an entropy

1 bit of
information
on every

0.724 x 1063 cm?



Quantum Gravity

Information Paradox
Discrete Spacetimes
Holographic Bound and Principle
AdS/CFT Correspondence |
Emergent Gravity

SUSsY
String Theory
Loop Quantum Gravity




2. 6raphene for hep-th

Z2/thindian-summer School of Physics

GRAPHENE
THE BRIDGE BETWEEN LOW- AND RHIGH ENERGY PHYSICS

September 14 - 18, 2015, Prague, Czech Republic

Main Program Organizers Venue Presentations Photos Participants Poster History Contact

Welcome

We cordially mnvite you to the 27th Indian-Summer School on Graphene - the Bridge between Low- and High-Energy Physics. to be held
September 14 - 18, 2013, in Prague, Czech Republic.

The School 1s dedicated to the exciting area where the high-energy and condensed matter physics intersect, and where graphene 1s a
prominent player on the scene.

The topics of the School include:

» low-energy physics of graphene: theory, experiments, and prospects
b aspects of the (2+1)-dimensional quantum field theory

» topological quantum field theory

b relativistic quantum systems in condensed matter

» graphene and quantum cosmology



The Simulation Science Workshops; Modelling Graphene-like Systems took
place in University College Dublin, Monday 28th April - Friday 2nd May 2014,

The Workshops coverd the following topics:

¢ Qverview of Weyl/scale/conformal symmetry
¢ Introduction to Chern-Simons systems

+ Unconventional supersymmetry

o Generically deformed graphene

* Topological aspects of graphene
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First scale
Ey~uvp/l ~4.2eV

m-electrons see the graphene sheet as a continuum

A = VF / dS T ( ZZ,*T l.' o H) = jup f dS QTZ._‘ Ay__.(z. 8(_1_ Z.‘

fEO = 'UFt, ,-}_.0 = 03, "‘fl — 'iUQ, "}"2 = —'iUl, Wlth h__a’ hfb]+ = 27]0().

No mixing of Fermi points (conf. flat)
Second scale, r radius of curvature,

E. ~uvp/r < E,

No impurities, vacancies, wrinkles, Coulomb scatterers,
resonant scatterers

deformation type | Q,(=w}J,) | E.(= e} P,) | scale

intrinsic /inelastic | curvature torsion < FE,
extrinsic/elastic £ ~ Ou ~ U < Ey




The tree regimes

small wavelength medium wavelength |arge wavelength
E>4eV E~1eV E~10meV

elas; dis; n-lin elas; cont/dis; lin inelas: cont: lin



The simplest setting is to go to regimes where only intrinsic
curvature counts

1y 1] mno . 1, <
R Kl — € JGMG am.w-n- — € JG(_;;Z]C

where Jw = w;.
We include time, in the most gentle way

1 0 0
graphene __
g LV = () 0
O JL])

8tg.gj = (.
SO(2)-valued disclination field — SO(1,2)-valued disclina-
tion field, so R'j;; — R",,,, etc.
The very long wavelength /very small energy transport prop-
erties of graphene, are well described by the following ac-
tion

A = ivr [ d*x\/g vy ( Oy + 0,0



3. Hawking on graphene

This exotic situation, on the graphene side, is very meagre,
on the hep-th side
Local Weyl symmetry

gw(x) — @2(37)9;11/(37) and  Y(x) = Cff)_l(x)@/)(x)

and

A— A

This is a huge and powerful symmetry:
Classical physics in g,, = classical physics in @29#”

Important cases are conformally flat spacetimes
_ 42
Guv = O Ny

Do not be misled by the words here: in (2+1)d conformally
flat is even a (BTZ) BH!



For CF spacetimes the effects of curvature are null on the
classical physics of a massless Dirac field

But, quantum mechanically, Weyl is implemented through
V(@) = (@)U~ = ¢ @)u(a)
and
0)" = U10)
with
U = exp {/dgy In o(y)L’T(y)zf(y)}
the vacuum is a condensate, hence, e.g.,

SGF(ffla To) = @1(x1)®1(272)5‘mt($1, )

where

5(33'1, CEQ) — <O"¢i’(ﬂfl)’&'ﬁ(ﬂfg)‘U>



How can we make CF spacetimes with

‘ 1
2+1 =
g 1 x:\ :z :

The condition is

CH.U — GAJ.AHV/\R-(B):j + Ez//\H.vAR'(B): =0

All surfaces of constant Gaussian curvature K, give a CF
spacetime!

Interesting, but no horizons in sight...




There is another case, that is

1
}C — —ﬁ
which brings us into Lobachevsky geometry

2
ds?. =t gg(d@-? +di?)

graphene




y = (0 event horizon
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The line element of this surface of revolution is
di* = du® + R*(u)dv*
where
R(u) = ¢ e"/"

That is a Beltrami pseudosphere

The Hilbert horizon is the maximal circle
R(ugp) =r
The parameter ¢ sets:

(a) the origin of u (R(u =0) = ¢)
(b) its pace (the bigger r/c, the farther is the boundary)

For graphene



Altogether

(2 2u/r r —ou/r 2 259 9 9
dsg, = 3 2/ ik 2T (d — du®) — rPdv?| = ¢ (u) dsh

ds% is the line element of the Rindler spacetime, e.g. for
the right wedge
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The two horizons merge in a limit
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Table 1: Quantification of how good is to approximate the Hilbert horizon of the Beltrami

] ) . . ?
spacetime, R = r, with a Rindler event horizon. The closer (p = —({/r)*/In(r/f) is to zero,

the better is the approximation. In the table we indicate three values of r, the corresponding
values of (g, and we also explicitly indicate the corresponding values of £/r (recall that ¢ ~ 2?&.).
This latter parameter is also a measure of how close to zero is gy, = 1/r, in units of the lattice
spacing £: 1/(r/f). The values are all approximate.

r (p fr

204 | —4x 1073 | 0.1
lum | =5x1077 | 2x 1074
Ilmm | -3x1071% | 2x 1077




There is morel

R. McLachlan, Maths. Int. 16, 31 (1994).
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Table 3: Quantification of how good is to approximate the Hilbert horizon of the hyperbolic
.. ]

pseudosphere_spacetime with a BTZ black hole event horizon. The closer (p,, = (Ryp —
Rpr)/Rpn is to zero, the better is the approximation. In the table we indicate three values of

¢/r comparable to those used in Tables 1 and 2, the corresponding values of (g, then how
close the Hilbert horizon of this spacetime (R = /1 + (£2/r?%)) is to the Hilbert horizon of the
Beltrami spacetime (R = r) (that is also a measure of now well the hyperbolic pseudosphere
spacetime can be identified with the Beltrami spacetime). In the last column are the values of
the BTZ mass M in terms of graphene parameters. All the values are approximate.

Ur | Cuw | Run—n)/r|M
0.1 | 5x10?% [5x102 102
1004 5x10? | 5x10°° 108
1077 | 5x 1071 | 5x107® 10~
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Table 2: Quantification of how good is to approximate the Hilbert horizon of the elliptic pseu-

dosphere spacetime with a cosmological event horizon. The closer (g = (Repn — Ryn)/r is to

zero, the better is the approximation. In the table we indicate three values of /r comparable
to those used in Table 1, the corresponding values of (g, and of how close the Hilbert horizon
of this spacetime (R = r cos ) is to the Hilbert horizon of the Beltrami spacetime (R = r). The
latter column, t.lmmeasure of how well the elliptic psendosphere spacetime can be
identified with the Beltrami spacetime. The values are all approximate.

0~ Llfr CEu (Rgp —r)/r
0.1 5x 1071 | 5x 1073
10~14 5x 10713 | 5x 1077
107 5x 10722 | 5x 10715

5!
5!




4 In the lab

There is a LONG list of things to do

First, we built the 'graphenic Beltrami’ on computer







Fy = {exp{u +iv}lv =2mn/5,u = rin(|n|/6)}

where n € Zr. 'The sign of n is related to the spiral’s chi-
rality (ssb of the parity in Y).

The 6 discrete values of u = rIn(R/r) correspond to the
point at infinity, R/r = 0, and to the 5 tangent cones with
apertures oy, = arcsin(n/6)

F}f? is a cyclic loxodromic subgroup of SL(2,Z) of order 5.
hence the NEC group of Beltrami









Then, we shall measure Hawking on it

p® eV 'm?)
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Then, all the rest...
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5. Selected refs

AL, P Pais, Phys Rev D 92 (2015) 1250095 (fresh theory)

S Taioli, R Gabbrielli, S Simonucci, NM Pugno, AL,
J Phys: Cond Mat 28 (2016) 13LTO1 (fresh computer sim.)

AI, G Lambiase, Phys Lett B 716 (2012) 334: Phys
Rev D 90 (2014) 025006 (the Hawking phenomenon)

AI, Ann Phys 326 (2011) 1334; Int J Mod Phys D 24
(2015) 1530013 (seminal work AND detailed review)
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