Heavy Flavor Era at RHIC

Barbara Trzeciak

Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering

INVESTMENTS IN EDUCATION DEVELOPMENT

Properties of Nuclear Matter

➢ Quantum Chromodynamics (QCD) – fundamental description of strong interactions

QCD Phase Diagram

Create Quark Gluon Plasma in a laboratory

Create Quark Gluon Plasma in a laboratory

Collision evolution

Collision geometry

- \rightarrow Central collisions: b \sim 0
- → Peripheral: $b \sim b_{max}$
- Number of participants (N_{part}): number of incoming nucleons in the overlap region
- Number of binary collisions (N_{bin}) : number of inelastic nucleon-nucleon collisions

Non-central collision

5/2/2015 Barbara Trzeciak 9

Nuclear modification factor

Particle production in A+A compare to p+p

$$
R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle Nbin \rangle_{AA} \text{Yield}_{pp}(p_T)}
$$

➔ No medium effect:

- $\overline{R_{AA}}$ < 1 in regime of soft physics
- $\alpha_{\rm A} = 1$ at high p_T hard scattering dominates – A+A superposition of p+p
- ➔ Suppression:
	- $\overline{R_{AA}}$ < 1 at high p_{T}

Relativistic Heavy Ion Collider

Relativistic Heavy Ion Collider

RHIC Heavy Ion Collisions

• Different species at different CMS energies

• More data each year

Understanding QCD Phase Diagram

➢ Top RHIC energies

- Hot and dense sQGP
- Initial conditions
- ➢ Beam Energy Scan at RHIC
	- ➔ Study QCD phase structure
		- Phase boundary
		- **QCD Critical point**
	- ➔ So far: 7.7, 11.5, 14.5,
	- 19.6, 27, 39 GeV
	- ➔ BES-II: focus on energies < 20 GeV

STAR Detector

PHENIX Detector

PHENIX Detector

Particle identification

Electron Identification

Heavy Flavor Physics

Why heavy flavor

Why heavy flavor

- ➔ Unique QGP probes
	- ➔ Produced in initial, hard scattering, stage of the collisions
	- ➔ Masses external to QCD
	- ➔ Sensitive to initial gluon density and distribution

➔ Interact with the medium differently from light quarks

Why heavy flavor

- ➔ Production and elliptic flow sensitive to dynamics of the medium – degree of the medium thermalization
- ➔ Parton energy loss mechanism
	- ➔ Medium induced gluon radiation

➔ Dead cone effect – reduction of emission probability in particle direction

$$
\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b
$$
?

02/05/15 Barbara Trzeciak 22

Energy loss

$$
\Delta E = \Delta E_{coll} + \Delta E_{rad}
$$

- ➔ Collisional energy loss – elastic scattering with the medium constituents (low momenta)
- ➔ Radiative energy loss inelastic scattering (high momenta)

Heavy Flavor Physics at RHIC

Selected A+A results

Heavy Flavor Physics at RHIC

Open Heavy Flavor and Quarkonia

Open Heavy Flavor

➔ Direct reconstruction of open charm

- ✔ direct access to heavy quark kinematics
- ✗ high statistics compete with large combinatorial background w/o good vertex resolution
- ✗ difficult to trigger
- ➔ Non-photonic electrons (NPE) electrons from semi-leptonic HF hadron decays
	- ✔ higher branching ratio
	- ✔ easy to trigger
	- ✗ indirect access to heavy quark kinematics
	- ✗ contribution from c and b

5/2/2015 Barbara Trzeciak 28

9.6%

56.50

Leevel

DO

K

 π^+

D p_T spectra in p+p 200 GeV

 D p_r spectra in p+p 500 GeV

D in Au+Au 200 GeV

 \checkmark In central collisions strong suppression at high $p_T - p_T$

D in Au+Au 200 GeV

Similar suppression to light hadrons

U+U Collisions

D in U+U 193 GeV

Similar behavior in U+U and Au+Au

NPE in Au+Au 200 GeV

- Strong suppression at high p_T
	- \bullet Similar to D⁰ mesons and light hadrons suppression
- *NPE includes both c and b*
- \checkmark Finite v_2 at low and intermediate p_{τ}
- ➔ Suggests strong charmmedium interaction, but more precise measurements of D^o v₂ are needed

NPE in Au+Au 200 GeV

- ✓ Gluon radiation scenario alone fails to describe large NPE suppression
	- No model can successfully explain the suppression and $v₂$ simultaneously

NPE v₂ - energy dependence

- At $p_T < 1$ GeV/c lower v_2 at 39 and 62.4 GeV compare to 200 GeV
	- Hint of a difference in the degree of charmed-medium interaction at lower energies

NPE in Au+Au and Cu+Cu 200 GeV

- ✓ d+Au Cold Nuclear Matter (CNM) effects not related to hot and dense medium ✓ Au+Au – hot medium effects
- 5/2/2015 Barbara Trzeciak 38 ✓ Cu+Cu suppression between d+Au and Au+Au

Why quarkonia

Charmonia: J/ ψ *,* ψ *(2S),* χ *_c Bottomonia:* Υ *(1S),* Υ *(2S),* Υ *(3S),* χ *_B J/ψ* / $\Upsilon \to e^+e^-(\mu^+\mu)$

First ideas:

➔ **color screening** - quarkonium suppression in QGP in heavy-ion collisions T/T_c 1/ $\langle r \rangle$ [fm⁻¹]

✓ **QGP thermometer** suppression of different states is determined by T and their binding energies

Screening radius: $r_D(T) \propto 1/T$

Other effects

But there are additional complications:

Still unclear **production mechanism** in elementary collisions

➢ **Feed-down:**

prompt: direct J/ ψ (~60%) + feed down from ψ (2S) and χ_c (~40%); non-prompt: B-mesons feed-down (up to 25% at 12 GeV/c, Phys. Lett. B722 (2013) 55)

➢ **Cold Nuclear Matter (CNM) effects** - nuclear (anti-)shadowing, Cronin effect, nuclear absorption, …

➢ Other **Hot Nuclear Matter effects** regeneration, ...

02/05/15 Barbara Trzeciak 41

Strategy

➢ **High-p^T J/ and – cleaner probes**

- $High-p_T$ J/ ψ almost not affected by 18 CNM effects and recombination $\mathbf{1}$
	- ✔ Υ negligible co-mover

absorption and recombination

at RHIC: σ_{cc} ~800µb >> σ_{bb} ~(1-2)µb

Rev. C82, 064905 (20)

Energy dependence of quarkonium production - varying relative contributions

➢ **Measure quarkonia at different colliding systems and energies, in different kinematic regions**

5/2/2015 Barbara Trzeciak 42

J/ψ **in Au+Au 200 GeV**

Suppression increases with collision centrality

 $High-p_T R_{AA}$ is systematically higher

> \rightarrow J/ ψ at high-p_T almost not affected by CNM effects and recombination

 $High-p_T$ J/ ψ suppressed in central collisions

→ QGP effects

J/ψ **in Au+Au 200 GeV**

✓ Suppression increases with collision centrality

> $High-p_T R_{AA}$ is systematically higher

 $High-p_T$ J/ ψ suppressed in central collisions

➔ QGP effects

➢ Models of Zhao et al. and Liu et al.: direct J/ψ production with color screening + recombination

 \rightarrow Both models describe the data well at low p_T

J/ψ **in Au+Au 200 GeV**

- ✓ Suppression increases with collision centrality
- \triangleright High-p_T R_{AA} is systematically higher
	- $High-p_T$ J/ ψ suppressed in central collisions

→ QGP effects

➢ Models of Zhao et al. and Liu et al.: direct J/ψ production with color screening + recombination

 \rightarrow At high p_T Liu et al. model describes the data well, while Zhao et. al model underpredicts the RAA

Energy dependence of J/ψ

- Suppression observed for all energies: 200, 62.4 and 39 GeV, similar trend in p_{T}
	- \rightarrow No strong energy dependence of J/ ψ R_{AA} ➔ Data agrees with the model prediction
		- No p+p reference for 62.4 and 39 GeV large uncertainties

5/2/2015 Barbara Trzeciak 46

J/ψ **in U+U 193 GeV**

Similar suppression pattern in $U+U$ and $Au+Au$ collisions, similar p_{τ} trend

in d+Au and Au+Au 200 GeV

Au+Au 200 GeV

- ✓ Suppression increases with collision centrality
- ✓ Strong suppression in central collisions

➔ Agreement with models that include presence of QGP

U+U 193 GeV

The same trend in $Au+Au$ and $U+U$ collisions

5/2/2015 Barbara Trzeciak 50

Suppression of different states

 \cdot Indication of complete $\Upsilon(2S+3S)$ suppression in central collisions

➔ Sequential melting

Particle identification

Electron Identification

Upgrades

PHENIX Upgrade

Installed and taking data: FVTX

Silicon detector for precision tracking at forward rapidity, covering PHENIX muon arms -b/c muon separation -ψ(2s) at forward rapidity

-Drell Yan dimuon production

 \triangleright VTX provides two new capabilities:

- 1) Tag and reject conversion providing an independent measurement of photonic background
- 2) Measure distance of closest approach to separate charm and bottom components of heavy flavor spectra

Front view of VTX

DCA_R for c/b separation

sPHENIX

arXiv:1207.6378

 \cdot interesting because of medium properties near T_c and because of complementarity with jet and quarkonia measurements from LHC

• additional tracking layers and EMCal pre-shower provide mass resolution and pion rejection to enable quarkonia program to augment STAR's and complement LHC

• sPHENIX is a significant reworking of PHENIX

• The proposed large acceptance sPHENIX detector, which is designed as a jet detector, will also - with added tracking and electron ID, make good separated Upsilon measurements.

STAR Muon Telescope Detector

Accessing muons at mid-rapidity

Multi-gap Resistive Plate Chamber (MRPC) - gas detector

Acceptance: 45% at |η| < 0.5

Long-MRPCs

Electronics same as in STAR TOF

STAR Muon Telescope Detector

Accessing muons at mid-rapidity

- No γ conversion
- Much less Dalitz decay contribution
- Less affected by radiative looses in the materials

Fully installed in 2014

STAR Heavy Flavor Tracker

5/2/2015 Barbara Trzeciak 59

Statistical projection for next runs

5/2/2015 Barbara Trzeciak 60

STAR Forward upgrade

RHIC schedule

- 7

STAR physics plan

Summary

- RHIC has perform many heavy flavor measurements, including open heavy flavor and quarkonia
- At different colliding energies and systems
- Indication of presence of hot and dense medium at top RHIC energies
	- ➔ RHIC Heavy Flavor Era has just started
		- With new upgrades more precise measurements in next few years to further investigate medium properties
		- Crucial to separate charm and bottom and understand CNM effects from p+A

This work was supported by the European social fund within the framework of realizing the project "Support of inter-sectoral **mobility and quality enhancement of research teams at Czech Technical University in Prague", CZ.1.07/2.3.00/30.0034.**

02/05/15 Barbara Trzeciak 64

Backup

02/05/15 **Barbara Trzeciak** 65

Matter at RHIC

- Strong elliptic flow
	- Collective flow of created matter
	- Constituent quark number degrees of freedom apparent in scaling laws of elliptic flow
- Jet quenching
	- Energy loss of high- p_{T} partons traversing the hot and dense matter
	- Particle production through recombination/coalescence
		- Dominates over fragmentation at medium p_{τ}
			- → noninteracting gas => strongly coupled QGP (sQGP)

Total charm cross section

5/2/2015 Barbara Trzeciak 67

D in Au+Au 200 GeV vs models

J/ψ **v**₂ and **p**_τ spectra

- J/ψ v₂ is consistent with zero at $p_T > 2$ GeV/c
	- \rightarrow Disfavors the model with J/ ψ production via thermalized (anti-)charm coalescence

- \checkmark At low p_T J/ ψ spectra softer than the TBW prediction from light hadron
	- ➔ small radial flow ?
	- \rightarrow regeneration at low p $_T$?