Heavy Flavor Era at RHIC

Barbara Trzeciak

Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering

INVESTMENTS IN EDUCATION DEVELOPMENT

Properties of Nuclear Matter

 Quantum Chromodynamics (QCD) – fundamental description of strong interactions

QCD Phase Diagram

Barbara Trzeciak

Create Quark Gluon Plasma in a laboratory

Create Quark Gluon Plasma in a laboratory

Collision evolution

Collision geometry

02/05/15

- → Central collisions: b ~ 0
- → Peripheral: b ~ b_{max}
- Number of participants (N_{part}): number of • incoming nucleons in the overlap region
- Number of binary collisions (N_{bin}): number • of inelastic nucleon-nucleon collisions

Non-central collision

Barbara Trzeciak

5/2/2015

9

Nuclear modification factor

Particle production in A+A compare to p+p

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle Nbin \rangle_{AA} \text{Yield}_{pp}(p_T)}$$

→ No medium effect:

- R_{AA} < 1 in regime of soft
 physics
- $R_{AA} = 1 \text{ at high } p_{T} \text{ hard}$ scattering dominates -A+A superposition of p+p
- → Suppression:
 - $_{\star}$ $R_{_{AA}} < 1$ at high $p_{_{T}}$

Barbara Trzeciak

Relativistic Heavy Ion Collider

Relativistic Heavy Ion Collider

RHIC Heavy Ion Collisions

 Different species at different CMS energies

	Year	System	√s _{NN} [GeV]
	2000	Au+Au	130
	2001	Au+Au	200
	2002	p+p	200
	2003	d+Au	200
	2004	Au+Au p+p	200, 62.4 200
	2005	Cu+Cu	200, 62.4, 22
	2006	p+p	62.4, 200, 500
	2007	Au+Au	200
	2008	d+Au p+p Au+Au	200 200 9.2
	2009	p+p	200, 500
	2010	Au+Au	200, 62.4, 39, 11.5, 7.7
	2011	Au+Au p+p	200,19.6,27 500
-	2012	U+U Cu+Au p+p	193 200 200,510
	2013	p+p	254.9
02/05/15	2014	Au+Au He+Au	7.3, 100 100

• More data each year

Barbara Trzeciak

Understanding QCD Phase Diagram

Top RHIC energies

- Hot and dense sQGP
- Initial conditions
- Beam Energy Scan at \triangleright RHIC
 - Study QCD phase structure
 - Phase boundary ~
 - QCD Critical point
 - → So far: 7.7, 11.5, 14.5,
 - 19.6, 27, 39 GeV
 - → BES-II: focus on energies < 20 GeV

STAR Detector

PHENIX Detector

PHENIX Detector

Particle identification

Electron Identification

Why heavy flavor

Why heavy flavor

- → Unique QGP probes
 - Produced in initial, hard scattering, stage of the collisions
 - → Masses external to QCD
 - Sensitive to initial gluon density and distribution

→ Interact with the medium differently from light quarks

Why heavy flavor

- Production and elliptic flow sensitive to dynamics of ⇒ the medium - degree of the medium thermalization
- Parton energy loss mechanism ⇒
 - Medium induced gluon radiation ⇒

Dead cone effect – → reduction of emission probability in particle direction

$$\Delta E_{g} > \Delta E_{q} > \Delta E_{c} > \Delta E_{b}$$
?

Energy loss

$$\Delta E = \Delta E_{coll} + \Delta E_{rad}$$

- → Collisional energy loss

 elastic scattering
 with the medium
 constituents (low
 momenta)
- Radiative energy loss inelastic scattering (high momenta)

Heavy Flavor Physics at RHIC

Selected A+A results

Heavy Flavor Physics at RHIC

Open Heavy Flavor and Quarkonia

Barbara Trzeciak

Open Heavy Flavor

Direct reconstruction of open charm

- direct access to heavy quark kinematics
 high statistics compete with large combinatorial background w/o good vertex resolution
 difficult to trigger
- * difficult to trigger
- → Non-photonic electrons (NPE) electrons from semi-leptonic HF hadron decays
 - higher branching ratio
 - easy to trigger
 - indirect access to heavy quark kinematics
 - contribution from c and b

Barbara Trzeciak

Courtesy of David Tlusty

9.6%

56.5g

200000

200

Κ

 π^+

D p_{τ} spectra in p+p 200 GeV

 $D p_{T}$ spectra in p+p 500 GeV

D in Au+Au 200 GeV

In central collisions strong suppression at high p_{τ} – \checkmark strong charm-medium interaction 10² Au+Au 200 GeV $(D^0 + \overline{D^0})/2$, lyl < 1 40-80% (b) $d^2N/(N_{ev}2\pi p_T dp_T dy)$ (GeV/c)⁻² 1.5 ☆ 0-80% 0-10% [×20] 10-40% [×5] 0.5 40-80% [/2] 10⁻¹ relimina ∦ 1.5⊧ ⊈ 10-40% (c) 百五百 Ъ ₫ 0.5 10⁻⁴ 2 0-10% (d) AR Preliminar 1.5 φ **o** p+p D⁰+D* [×2] 10⁻⁷ (a) p+p Levy scaled by $\langle N_{_{bin}} \rangle$ ¢ 0.5 Ċ Ο 2 6 2 6 8 n 4 TransverseMomemtum p₁ (GeV/c)

D in Au+Au 200 GeV

Similar suppression to light hadrons

U+U Collisions

D in U+U 193 GeV

✓ Similar behavior in U+U and Au+Au

NPE in Au+Au 200 GeV

- Strong suppression at high $\ensuremath{\textbf{p}_{\text{T}}}$
- Similar to D⁰ mesons and light hadrons suppression
- NPE includes both c and b
- Finite v_2 at low and intermediate p_T
- Suggests strong charmmedium interaction, but more precise measurements of D⁰ v₂ are needed

NPE in Au+Au 200 GeV

- Gluon radiation scenario alone fails to describe large NPE suppression
 - No model can successfully explain the suppression and v_2 simultaneously

36

NPE v₂ - energy dependence

- At $p_{T} < 1$ GeV/c lower v_{2} at 39 and 62.4 GeV compare to 200 GeV
 - Hint of a difference in the degree of charmed-medium interaction at lower energies

NPE in Au+Au and Cu+Cu 200 GeV

- d+Au Cold Nuclear Matter (CNM) effects not related to hot and dense medium
 Au+Au – hot medium effects
 - Cu+Cu suppression between d+Au and Au+Au Barbara Trzeciak

Why quarkonia

<u>Charmonia</u>: J/ψ , $\psi(2S)$, χ_{C}

First ideas:

<u>Bottomonia</u>: $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, χ_{B} $J/\psi / \Upsilon \rightarrow e^{+}e^{-}(\mu^{+}\mu^{-})$

color screening - quarkonium suppression in QGP in heavy-ion collisions

QGP thermometer suppression of different states is determined by T and their binding energies *Screening radius:*

 $r_D(T) \propto 1/T$

Other effects

But there are additional complications:

Still unclear *production mechanism* in elementary collisions

Feed-down:

<u>prompt</u>: direct J/ ψ (~60%) + feed down from ψ (2S) and χ_c (~40%); <u>non-prompt</u>: B-mesons feed-down (up to 25% at 12 GeV/c, Phys. Lett. B722 (2013) 55)

Cold Nuclear Matter (CNM) effects - nuclear (anti-)shadowing, Cronin effect, nuclear absorption, ...

Other *Hot Nuclear Matter effects* - regeneration, ...

Strategy

High- $p_{\tau} J/\psi$ and Υ - cleaner probes

- High-p_T J/ ψ almost not affected by CNM effects and recombination 1.0
 - Υ negligible co-mover

absorption and recombination

at RHIC: $\sigma_{cc} \sim 800 \mu b >> \sigma_{bb} \sim (1-2) \mu b$

Energy dependence of quarkonium production - varying relative contributions

Measure quarkonia at different colliding systems and energies, in different kinematic regions

J/ ψ in Au+Au 200 GeV

Suppression increases with collision centrality

High-p_T R_{AA} is systematically higher

> > J/ψ at high-p_T almost not affected by CNM effects and recombination

High-p_T J/ ψ suppressed in central collisions

→ QGP effects

J/ ψ in Au+Au 200 GeV

→

Suppression increases with collision centrality

High-p_T R_{AA} is systematically higher

High-p_T J/ ψ suppressed in central collisions

→ QGP effects

 Models of Zhao et al. and Liu et al.: direct J/ψ
 production with color
 screening + recombination

Both models describe the data well at low p_T

J/ ψ in Au+Au 200 GeV

→

- Suppression increases with collision centrality
- High-p⊤ R_{AA} is systematically higher
- High-p⊤ J/ψ suppressed in central collisions

→ QGP effects

Models of Zhao et al. and
 Liu et al.: direct J/ψ
 production with color
 screening + recombination

At high p_T Liu *et al.* model describes the data well, while Zhao *et. al* model underpredicts the R_{AA}

Energy dependence of J/ψ

- Suppression observed for all energies: 200, 62.4 and 39 GeV, similar trend in p_{τ}
 - No strong energy dependence of J/ψ R_{AA}
 Data agrees with the model prediction
 - *No* p+p reference for 62.4 and 39 GeV large uncertainties

Barbara Trzeciak

5/2/2015

J/ ψ in U+U 193 GeV

Similar suppression pattern in U+U and Au+Au collisions, similar p_{T} trend

γ in d+Au and Au+Au 200 GeV

Υ Au+Au 200 GeV

→

5/2/2015

- Suppression increases with collision centrality
- Strong suppression in central collisions

Agreement with models that include presence of QGP

γ U+U 193 GeV

✓ The same trend in Au+Au and U+U collisions

5/2/2015

Suppression of different Υ states

 \sim Indication of complete $\Upsilon(2S+3S)$ suppression in central collisions

→ Sequential melting

5/2/2015

Particle identification

Electron Identification

Upgrades

PHENIX Upgrade

Installed and taking data: FVTX

A.Durham - HP2013

5/2/2015

Silicon detector for precision tracking at forward rapidity, covering PHENIX muon arms -b/c muon separation $-\psi(2s)$ at forward rapidity

-Drell Yan dimuon production

> VTX provides two new capabilities:

- 1) Tag and reject conversion providing an independent measurement of photonic background
- 2) Measure distance of closest approach to separate charm and bottom components of heavy flavor spectra

Front view of VTX

DCA_R for c/b separation

5/2/2015

sPHENIX

arXiv:1207.6378

- interesting because of medium properties near $T_{\rm C}$ and because of complementarity with jet and quarkonia measurements from LHC

 additional tracking layers and EMCal pre-shower provide mass resolution and pion rejection to enable quarkonia program to augment STAR's and complement LHC

sPHENIX is a significant reworking of PHENIX

• The proposed large acceptance sPHENIX detector, which is designed as a jet detector, will also – with added tracking and electron ID, make good separated Upsilon measurements.

STAR Muon Telescope Detector

Accessing muons at mid-rapidity

Multi-gap Resistive Plate Chamber (MRPC) - gas detector

Acceptance: 45% at $|\eta| < 0.5$

Long-MRPCs

Electronics same as in STAR TOF

STAR Muon Telescope Detector

Accessing muons at mid-rapidity

- No γ conversion
- Much less Dalitz decay contribution
- Less affected by radiative looses in the materials

Fully installed in 2014

STAR Heavy Flavor Tracker

Statistical projection for next runs

STAR Forward upgrade

5/2/2015

RHIC schedule

Years	Poom Species and Energies	Science Goals	New Systems Commissioned	
rears	Beam Species and Energies	Science Goals	New Systems Commissioned	
2014	15 GeV Au+Au 200 GeV Au+Au	Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search	Electron lenses 56 MHz SRF STAR HFT STAR MTD	
2015-16	 15 p+p 200 GeV p+Au p+Si 200GeV 16 Au+Au 200 GeV p+p 500 GeV (or Au 	PHENIX MPC-EX Coherent e-cooling test		
2017	No Run		Low energy e-cooling upgrade	
2018-19	5-20 GeV Au+Au (BES-2)	Search for QCD critical point and onset of deconfinement	STAR ITPC upgrade Partial commissioning of sPHENIX (in 2019)	
2020	No Run		Complete sPHENIX installation STAR forward upgrades	
2021-22	Long 200 GeV Au+Au with upgraded detectors p+p, p/d+Au at 200 GeV	Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia	SPHENIX	
2023-24	No Runs		Transition to eRHIC	
02/05/15		Barbara Trzeciak	62	

STAR physics plan

Summary

- RHIC has perform many heavy flavor measurements, including open heavy flavor and quarkonia
- At different colliding energies and systems
- Indication of presence of hot and dense medium at top RHIC energies
 - → RHIC Heavy Flavor Era has just started
 - With new upgrades more precise measurements in next few years to further investigate medium properties
 - Crucial to separate charm and bottom and understand CNM effects from p+A

This work was supported by the European social fund within the framework of realizing the project "Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague", CZ.1.07/2.3.00/30.0034.

Backup

02/05/15

Matter at RHIC

- Strong elliptic flow
 - Collective flow of created matter
 - Constituent quark number degrees of freedom apparent in scaling laws of elliptic flow
- Jet quenching
 - Energy loss of high- p_{T} partons traversing the hot and dense matter
 - Particle production through recombination/coalescence
 - Dominates over fragmentation at medium p_{τ}
 - noninteracting gas => strongly coupled QGP (sQGP)

Total charm cross section

5/2/2015

D in Au+Au 200 GeV vs models

	TAMU	SUBATECH	Torino	Duke	LANL
HQ prod.	LO	FNOLL	NLO	LO	LO
QGP-Hydro	ideal	ideal	viscous	viscous	ideal
HQ eLoss	coll.	coll. +rad.	coll. +rad.	coll. +rad.	diss. +rad.
Coalescence	Yes	Yes	No	Yes	No
Cronin effect	Yes	Yes	No	No	Yes
Shadowing	No	No	Yes	Yes/No	Yes

$J/\psi v_2$ and p_T spectra

- $J/\psi v_2$ is consistent with zero at $p_T > 2$ GeV/c
 - → Disfavors the model with J/ψ production via thermalized (anti-)charm coalescence

- ✓ At low $p_T J/\psi$ spectra softer than the *TBW* prediction from light hadron
 - small radial flow ?
 - regeneration at low p_T