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Outlook
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Baryon and lepton number violation in the SM

- Majorana neutrinos and related phenomena

BSM perturbative L violation

BSM perturbative B violation
- proton decay and grand unification

- Dirac neutrinos and charge de-quantization in SM

- the “Higgs anti-discrimination act”
Comments on the TeV-scale SUSY paradigm

Recent developments in non-SUSY SO(10) GUTs



The GSW Standard Model
(non-perturbative B & L violation)
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B & L violation in the Standard model
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Expected at some point (non-perturbative):

Chiral anomalies: A / 1
32⇡2

Tr ({Ta, Tb}T ) F̃ a
µ⌫F bµ⌫
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Expected at some point (non-perturbative):

Chiral anomalies: A / 1
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Tr ({Ta, Tb}T ) F̃ a
µ⌫F bµ⌫
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B & L violation in the Standard model
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B+L non-conservation:
B + L = i

R
d3

xJ

0
B+L(x)

�(B + L) = Nf (�NCS ��nCS)
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B & L violation in the Standard model
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Chern-Simons numbers:

B+L non-conservation:
B + L = i

R
d3

xJ

0
B+L(x)

�(B + L) = Nf (�NCS ��nCS)
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B & L violation in the Standard model
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Vacuum structure of  non-abelian (Yang-Mills) gauge theories

Aµ = U@µ(U†)Fµ⌫ = 0 attained for pure gauge configurations

U 2 SU(2)
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B & L violation in the Standard model
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Vacuum structure of  non-abelian (Yang-Mills) gauge theories

Aµ = U@µ(U†)Fµ⌫ = 0 attained for pure gauge configurations

U 2 SU(2)
⇡3[SU(2)] = Z
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B & L violation in the Standard model
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Winding number of SU(2) transformations:

n
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Winding number of SU(2) transformations:

n

Pure-gauge configurations: NCS / n
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B & L violation in the Standard model
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Winding number of SU(2) transformations:

n

Pure-gauge configurations: NCS / n

Rates heavily suppressed...

A ⇠ e�2⇡/↵w ⇠ 10�80

Tunneling between minima with different n’s:  instantons 

�(B + L) / Nf ⇥�n
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B & L violation in the Standard model

7

Winding number of SU(2) transformations:

n

Pure-gauge configurations: NCS / n

3He! e+µ+⌫⌧9q + 3l $ ;

“Instanton effects” in the SM Rates heavily suppressed...

A ⇠ e�2⇡/↵w ⇠ 10�80

Tunneling between minima with different n’s:  instantons 

�(B + L) / Nf ⇥�n



Perturbative L violation
(in the SM with massive neutrinos)
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Standard model with massive neutrinos

9

charge quantization 

and

neutrino masses

imply

perturbative L violation
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(Hyper)charge quantization in the GSW Standard model

Ac /
1

32⇡2
Tr ({Ta, Tb}Tc) F̃ a

µ⌫F bµ⌫
Ta

Tb

Tc

Cancellation of the SU(3) x SU(2) x U(1) gauge anomalies
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(Hyper)charge quantization in the GSW Standard model

Trick: stick to just SU(2)xU(1) and consider Yukawa interactions

SU(2)2 U(1):

U(1)3:

QL = (3, 2, YQ)
uR = (3, 1, YU )
dR = (3, 1, YD)
LL = (1, 2, YL)
eR = (1, 1, YE)

6YQ + 2YL = 0

12Y 3
Q + 4Y 3

L � 6Y 3
U � 6Y 3

D � 2Y 3
E = 0

Ac /
1

32⇡2
Tr ({Ta, Tb}Tc) F̃ a

µ⌫F bµ⌫
Ta

Tb

Tc

Cancellation of the SU(3) x SU(2) x U(1) gauge anomalies
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(Hyper)charge quantization in the GSW Standard model

YDijQLi⟨H⟩DRj +YU ijQLi⟨H̃⟩URj +YEijLLi⟨H⟩ERj +YN ijLLi⟨H̃⟩NRj +h.c.Yukawas:

�YQ + YU � YH = 0�YQ + YD + YH = 0 �YL + YE + YH = 0

H = (1, 2, YH)

Trick: stick to just SU(2)xU(1) and consider Yukawa interactions

SU(2)2 U(1):

U(1)3:

QL = (3, 2, YQ)
uR = (3, 1, YU )
dR = (3, 1, YD)
LL = (1, 2, YL)
eR = (1, 1, YE)

6YQ + 2YL = 0

12Y 3
Q + 4Y 3

L � 6Y 3
U � 6Y 3

D � 2Y 3
E = 0

Ac /
1

32⇡2
Tr ({Ta, Tb}Tc) F̃ a

µ⌫F bµ⌫
Ta

Tb

Tc

Cancellation of the SU(3) x SU(2) x U(1) gauge anomalies
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(Hyper)charge quantization in the GSW Standard model

YDijQLi⟨H⟩DRj +YU ijQLi⟨H̃⟩URj +YEijLLi⟨H⟩ERj +YN ijLLi⟨H̃⟩NRj +h.c.Yukawas:

�YQ + YU � YH = 0�YQ + YD + YH = 0 �YL + YE + YH = 0

H = (1, 2, YH)

Trick: stick to just SU(2)xU(1) and consider Yukawa interactions

SU(2)2 U(1):

U(1)3:

QL = (3, 2, YQ)
uR = (3, 1, YU )
dR = (3, 1, YD)
LL = (1, 2, YL)
eR = (1, 1, YE)

6YQ + 2YL = 0

12Y 3
Q + 4Y 3

L � 6Y 3
U � 6Y 3

D � 2Y 3
E = 0

Solution: YQ = + 1
6 , YU = + 2

3 , YD = � 1
3 , YL = � 1

2 , YE = �1

Charge quantization in the SM is a consequence of anomaly cancellation!

Ac /
1

32⇡2
Tr ({Ta, Tb}Tc) F̃ a

µ⌫F bµ⌫
Ta

Tb

Tc

Cancellation of the SU(3) x SU(2) x U(1) gauge anomalies
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(Hyper)charge de-quantization in the Standard model
with massive (Dirac) neutrinos

Cancellation of the SU(3) x SU(2) x U(1) gauge anomalies

Assume that neutrinos are massive (Dirac) fermions: needs NR = (1, 1, YN )
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(Hyper)charge de-quantization in the Standard model
with massive (Dirac) neutrinos

Cancellation of the SU(3) x SU(2) x U(1) gauge anomalies

SU(2)2 U(1):

U(1)3:

6YQ + 2YL = 0

12Y 3
Q + 4Y 3

L � 6Y 3
U � 6Y 3

D � 2Y 3
E �2Y 3

N = 0

YDijQLi⟨H⟩DRj +YU ijQLi⟨H̃⟩URj +YEijLLi⟨H⟩ERj +YN ijLLi⟨H̃⟩NRj +h.c. Yukawas:

�YQ + YU � YH = 0

�YQ + YD + YH = 0 �YL + YE + YH = 0

�YL +YN � YH = 0

Solution: YQ = + 1
6 �

1
3YN , YU = + 2

3 �
1
3YN , YD = � 1

3 �
1
3YN ,

YL = � 1
2 +YN , YE = �1 +YN YN 2 R

Charge quantization is lost! 

Assume that neutrinos are massive (Dirac) fermions: needs NR = (1, 1, YN )
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Z 0

12

(Hyper)charge de-quantization in the Standard model
with massive (Dirac) neutrinos

A simple symmetry argument

B and L anomalies in the presence of the RH neutrino:

Tr({Y, Y }(B � L)) = 0 ,Tr({T 3
L, T 3

L}(B � L)) = 0 ,
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Z 0

12

(Hyper)charge de-quantization in the Standard model
with massive (Dirac) neutrinos

A simple symmetry argument

B and L anomalies in the presence of the RH neutrino:

Tr({Y, Y }(B � L)) = 0 ,Tr({T 3
L, T 3

L}(B � L)) = 0 ,

Y ! Y + "(B � L) is a again a perfectly consistent hypercharge, " = �YN

Experimentally (neutron neutrality): |"| < 10�21 Foot, Lew, Volkas 1993 

Babu, Mohapatra, Phys.Rev. D41 (1990) 271

B - L can be gauged !

With the RH neutrino: Tr(B � L)3 = 0
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Standard model with massive neutrinos and quantized charges

This suggests that neutrinos are better not Dirac! 

Massive but not Dirac = Majorana = strictly neutral = L violation
 E. Majorana 1937
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Standard model with massive neutrinos and quantized charges

This suggests that neutrinos are better not Dirac! 

Massive but not Dirac = Majorana = strictly neutral = L violation
 E. Majorana 1937

YDijQLi⟨H⟩DRj +YU ijQLi⟨H̃⟩URj +YEijLLi⟨H⟩ERj +YN ijLLi⟨H̃⟩NRj +h.c.

+ 1
2MRijN c

RiNRj + h.c.

Example: RH neutrino with an explicit Majorana mass term:
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Standard model with massive neutrinos and quantized charges

This suggests that neutrinos are better not Dirac! 

Massive but not Dirac = Majorana = strictly neutral = L violation
 E. Majorana 1937

YDijQLi⟨H⟩DRj +YU ijQLi⟨H̃⟩URj +YEijLLi⟨H⟩ERj +YN ijLLi⟨H̃⟩NRj +h.c.

+ 1
2MRijN c

RiNRj + h.c.

Example: RH neutrino with an explicit Majorana mass term:

M⌫ =
✓

0 YNv
Y T

N v MR

◆

P. Minkowski, Phys. Lett. B67, 421 (1977)

m⌫ = YNMR
�1v2Y T

N “seesaw mechanism”
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Three kinds of tree-level renormalizable seesaw

14
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H H

LL LL

NR
type-I seesaw

(1, 1, 0)

H H

�L

LL LL

type-II seesaw

(1, 3,±1)

Three kinds of tree-level renormalizable seesaw

14

RHN with a large 
Majorana mass term
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14

Heavy scalar triplet 
with a dimensionful 
trilinear scalar coupling

RHN with a large 
Majorana mass term
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H H

LL LL

NR
type-I seesaw

(1, 1, 0)

H H

�L

LL LL

type-II seesaw

(1, 3,±1)

H H

LL LL

F
type-III seesaw

(1, 3, 0)

Three kinds of tree-level renormalizable seesaw

14

Heavy scalar triplet 
with a dimensionful 
trilinear scalar coupling

RHN with a large 
Majorana mass term

Fermionic triplet 
with a large 
Majorana mass term

In all cases the SM neutrino 
is a light Majorana fermion
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Lepton number violation at colliders
type-II seesaw

Type-II seesaw:

H H

�L

LL LL

(1, 3,±1)

- doubly-charged scalar in the spectrum!

15

review: arXiv:1001.2693 [hep-ph]
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Lepton number violation at colliders
type-II seesaw

Type-II seesaw:

H H

�L

LL LL

(1, 3,±1)

- doubly-charged scalar in the spectrum!

- same sign dilepton pairs (boosted)

Z⇤ ! �++��� ! (l+l+)(l�l�)

15

review: arXiv:1001.2693 [hep-ph]
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Lepton number violation at colliders
type-II seesaw

Type-II seesaw:

H H

�L

LL LL

(1, 3,±1)

- doubly-charged scalar in the spectrum!

- same sign dilepton pairs (boosted)

Z⇤ ! �++��� ! (l+l+)(l�l�)

- decays rely on the size of the triplet Yukawa couplings

- flavour structure correlated to neutrino mixing

15

review: arXiv:1001.2693 [hep-ph]
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Type-III seesaw: - neutral and charged fermions

H H

LL LL

F

(1, 3, 0)

16

review: arXiv:1001.2693 [hep-ph]

Lepton number violation at colliders
“light” type-III seesaw
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Type-III seesaw: - neutral and charged fermions

- triplet feels the SM gauge bosons - better than singlet!
H H

LL LL

F

(1, 3, 0)

16

review: arXiv:1001.2693 [hep-ph]

Lepton number violation at colliders
“light” type-III seesaw
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Type-III seesaw: - neutral and charged fermions

- triplet feels the SM gauge bosons - better than singlet!
H H

LL LL

F

(1, 3, 0)

16

review: arXiv:1001.2693 [hep-ph]

- multi-lepton channels as in type-II

F+ ! Z⇤l+ ! (l+l�)l+

- kinematics different, not so spectacular...

Lepton number violation at colliders
“light” type-III seesaw
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B. Pontecorvo, Sov.Phys.JETP 6 (1957) 429

The first approach to neutrino oscillations was indeed “L-violating”!

Lepton number violation in oscillations
LNV is a really old story...
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B. Pontecorvo, Sov.Phys.JETP 6 (1957) 429

The first approach to neutrino oscillations was indeed “L-violating”!

Lederman, Schwarz, SteinbergerNB Muon neutrinos only in1962!

NB Oscillations in the neutral Kaon system 1957 M.L. Good, Phys. Rev. 106 (1957) 591

Lepton number violation in oscillations
LNV is a really old story...
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Diagrammatics: see e.g. E. Akhmedov, J. Kopp, JHEP 1004 (2010) 008 

A(⌫↵ ! ⌫�) /
X

i

U⇤
↵iU

⇤
�je

�i
m2

i L

2E

B. Pontecorvo, Sov.Phys.JETP 6 (1957) 429

The first approach to neutrino oscillations was indeed “L-violating”!

Lederman, Schwarz, SteinbergerNB Muon neutrinos only in1962!

NB Oscillations in the neutral Kaon system 1957 M.L. Good, Phys. Rev. 106 (1957) 591

Lepton number violation in oscillations
LNV is a really old story...
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Diagrammatics: see e.g. E. Akhmedov, J. Kopp, JHEP 1004 (2010) 008 

A(⌫↵ ! ⌫�) /
X

i

U⇤
↵iU

⇤
�je

�i
m2

i L

2EA(⌫↵ ! ⌫̄�) /
X

i

U⇤
↵iU

⇤
�j

mi

E
e�i

m2
i L

2E

B. Pontecorvo, Sov.Phys.JETP 6 (1957) 429

The first approach to neutrino oscillations was indeed “L-violating”!

Lederman, Schwarz, SteinbergerNB Muon neutrinos only in1962!

NB Oscillations in the neutral Kaon system 1957 M.L. Good, Phys. Rev. 106 (1957) 591

Lepton number violation in oscillations
LNV is a really old story...
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Diagrammatics: see e.g. E. Akhmedov, J. Kopp, JHEP 1004 (2010) 008 

A(⌫↵ ! ⌫�) /
X

i

U⇤
↵iU

⇤
�je

�i
m2

i L

2EA(⌫↵ ! ⌫̄�) /
X

i

U⇤
↵iU

⇤
�j

mi

E
e�i

m2
i L

2E

Nowadays mostly academic... see e.g. Z-z. Xing, arXiv:1301.7654v2

B. Pontecorvo, Sov.Phys.JETP 6 (1957) 429

The first approach to neutrino oscillations was indeed “L-violating”!

Lederman, Schwarz, SteinbergerNB Muon neutrinos only in1962!

NB Oscillations in the neutral Kaon system 1957 M.L. Good, Phys. Rev. 106 (1957) 591

Lepton number violation in oscillations
LNV is a really old story...
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Figures from Chakrabortty et al., 2012
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Neutrinoless double beta decay

Diagrammatics:

18

A / g4 hmi
q2

F =
p

m⌫M�1

Heavy neutrinos also feel gauge interactions!

Figures from Chakrabortty et al., 2012
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q2 A / g4

X

i

F 2 

Mi

F =
p

m⌫M�1

Heavy neutrinos also feel gauge interactions!

Figures from Chakrabortty et al., 2012
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Neutrinoless double beta decay

Diagrammatics:

18

A / g4 hmi
q2

This may even dominate if M is in the TeV region 
or if there are RH currents around TeV

A / g4
X

i

F 2 

Mi

F =
p

m⌫M�1

Heavy neutrinos also feel gauge interactions!
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W W

Schechter - Valle mechanism:

J. Schechter, J. F.  W.  Valle, PRD 1982 
Takasugi, PLB 1984

If neutrinoless double beta decay is seen, neutrinos are inevitably Majorana...

But what if there is something else?

Neutrinoless double beta decay
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Fukugita, Yanagida, PLB174, 1986

Perturbative + nonperturbative LNV very handy for baryogenesis

Kuzmin, Rubakov, Shaposhnikov, PLB155, 1985

- thermal instantons (aka sphalerons) boost L to B transitions

Generating net L in the type-I seesaw:

CP asymmetry:

Lepton number violation in cosmology - leptogenesis
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h
(YNY †

N )21i
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CP asymmetry:
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Lepton number violation in cosmology - leptogenesis
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CP asymmetry:
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Davidson-Ibarra bound: 

M1 & 109GeV

S. Davidson and A. Ibarra, Phys. Lett. B535, 25 (2002)

Lepton number violation in cosmology - leptogenesis
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SM as an effective theory 

22

• Neutrino oscillations: �m2
� = (8.0± 0.3)⇥ 10�5eV2

|�m2
A| = (2.5 ± 0.3)⇥ 10�3eV2

LO
W

ER

•          :

• Cosmology (structure):
X

i

mi . 1eV

0⌫2� hmeei . 1eVU
PP

ER
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SM as an effective theory 

22

Weinberg’s d=5 operator L 3 LLHH

⇤
 S. Weinberg, PRL43, 1566 (1979)

BTW: good to have the “complete Higgs doublet” :-)

(If you prefer LABEHGHKW you rather read “HIGGS”...)

There is only one d=5 operator in the effective SM!

⇤ ⇠ (1012 � 1014) GeV

• Neutrino oscillations: �m2
� = (8.0± 0.3)⇥ 10�5eV2

|�m2
A| = (2.5 ± 0.3)⇥ 10�3eV2

LO
W

ER

•          :

• Cosmology (structure):
X

i

mi . 1eV

0⌫2� hmeei . 1eVU
PP

ER



Perturbative B violation
(in gauge extensions of the SM)
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d=6 baryon number violation mediators
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d=6 baryon number violation mediators

(dT
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Vector exchange

(3, 2,� 5
6 )� (3, 2,+ 5
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d=6 baryon number violation mediators

(dT
R C uR)(QT

L C LL) = [(uR)c�µQ][(dR)c�µL]

Fierz

Vector exchange

(3, 2,� 5
6 )� (3, 2,+ 5

6 )

Example:

Scalar exchange

(3, 1,� 1
3 )� (3, 1,+ 1

3 )

Such a new physics should be above 1015 GeV !??

Proton instability:

p+

⇡0

new gauge interactions?

�
p+

⇡0

new Yukawa interactions?

�p ⇠
m5

p

M4
< (1034y)�1
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Can SM tell us anything about such a huge-scale dynamics?

27

Running gauge couplings in the SM:

µ
d
dµ

g = �(g, ...)
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Can SM tell us anything about such a huge-scale dynamics?

27

Running gauge couplings in the SM:

µ
d
dµ

g = �(g, ...)

d
dt

↵�1
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first order linear differential 
equation with constant coefficients 

(at the leading order) 
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theories based on simple compact gauge groups
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GUTs are spontaneously broken BSM gauge 
theories based on simple compact gauge groups

Grand Unifications

31

H.Georgi, S.Glashow, Phys.Rev.Lett. 30 (1974)

They also look like theories of the d=6 BNV operators in the SM...

...and other stuff: magnetic monopoles, charge quantization, LNV etc.
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• What Georgi and Glashow showed was the uniqueness of SU(5) @ rank=4

The minimal SU(5) GUT

32
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H.Georgi, S.Glashow, Phys.Rev.Lett. 30 (1974)

The minimal SU(5) GUT
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My very personal view on the TeV-scale supersymmetry
brief version
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TeV-scale supersymmetry...

People seem to really fancy it...

“It makes the gauge unification work better!”

“It protects the Higgs mass from large corrections!”

“It provides an excellent WIMP dark matter candidate!”

“It is just around the corner!”

I don’t (at the TeV scale).

The “instability” is a truncated perturbation theory artifact. 
The physical Higgs mass is stable even without SUSY.  
Correlations among measurable quantities are stable. 

This is schizophrenic. SUSY GUTs are sterile, non-perturbative, 
proton decays @ d=5 (or even @ d=4), problematic with seesaw etc. 

No reason for this in view of the two comments above.

Only with extra symmetries imposed (external assumptions)



Current situation and recent developments 
in non-SUSY SO(10) GUTs
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SO(10) Higgsology

41

- smaller - few SM singlets - easier to break to the SM

Chang, Mohapatra, Gipson, Marshak, Parida 1985 SU(5) branches omitted

{16} (1,2,4)

“Optically” minimal Higgs models:
45+16 or 45+126

!R !Y

�

!R
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SO(10) broken by 45,  rank reduced by 126
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“Do not trust arguments based on the lowest order of perturbation theory.”

S.Weinberg , “Why RG is a good thing”
in “Asymptotic Realm of Physics”, MIT press 1983

The minimal SO(10) nightmare
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The minimal SO(10)

Quantum salvation of the minimal SO(10) GUT

Bertolini, Di Luzio, MM, PRD 81, 035015 (2010)

One-loop effective potential:
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Thank you for your kind attention!
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TeV-scale supersymmetry...

People seem to really fancy it...

“It makes the gauge unification work better!”

“It protects the Higgs mass from large corrections!”

“It provides an excellent WIMP dark matter candidate!”

“It is just behind the corner!”

I object!
... actually, all of these.
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In the true one-loop vacuum the polynomial       -dependence drops out! M2
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Is there anything to protect?

In the true one-loop vacuum the polynomial       -dependence drops out! M2
S

The physical Higgs mass is not fine-tuned, just the (unphysical) VEV

The poor Higgs boson is in the same shape like anybody else in the SM!

“Higgs anti-discrimination act”

Full one-loop effective potential level approach: MM, EPJ C73 (2013) 2415, arXiv:1212.4660
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Is there anything to protect?

In the true one-loop vacuum the polynomial       -dependence drops out! M2
S

The physical Higgs mass is not fine-tuned, just the (unphysical) VEV

The poor Higgs boson is in the same shape like anybody else in the SM!

“Higgs anti-discrimination act”

Full one-loop effective potential level approach: MM, EPJ C73 (2013) 2415, arXiv:1212.4660

Who cares? Do you mind getting rid of the UV divergences?

Correlations among observables are stable!
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Why the TeV-scale SUSY does not make the unification work better

Unification “works” if it is internally consistent, accommodates all existing data 
and provides testable predictions (typically BNV)
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Why the TeV-scale SUSY does not make the unification work better
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Why the TeV-scale SUSY does not make the unification work better

Proton decays is too fast in SUSY GUTs 
(runs @ d=5 and sometimes even @ d=4)

Unification “works” if it is internally consistent, accommodates all existing data 
and provides testable predictions (typically BNV)
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Why the TeV-scale SUSY does not make the unification work better

Proton decays is too fast in SUSY GUTs 
(runs @ d=5 and sometimes even @ d=4)

Kaons favoured:                             !!!p+ ! K+⌫̄ , . . .

dc
L

uc
L

ũc
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w̃±

d=5 proton decay in SUSY:



Michal Malinský, IPNP B and L violation in the SM and beyond / many55

Why the TeV-scale SUSY does not make the unification work better

Unification “works” if it is internally consistent, accommodates all existing data 
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Why the TeV-scale SUSY does not make the unification work better

SUSY GUTs have trouble with perturbativity, initial conditions, Planck-
scale effects and, thus, with uncertainties in p-decay predictions

Unification “works” if it is internally consistent, accommodates all existing data 
and provides testable predictions (typically BNV)
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Why the TeV-scale SUSY does not make the unification work better

SUSY GUTs have trouble with perturbativity, initial conditions, Planck-
scale effects and, thus, with uncertainties in p-decay predictions

Unification “works” if it is internally consistent, accommodates all existing data 
and provides testable predictions (typically BNV)



Experimental affairs



Michal Malinský, IPNP B and L violation in the SM and beyond / many57

KamiokaNDE

First large water-Cherenkov detectors

Feb. 23 1987 07:35 - 12 out of 1058 neutrinos

from SN 1987A (170,000 ly)

Kamioka-cho, Gifu, Japan

3,000 tons of pure water, about 1,000 PMs

1983-1985 - first phase (proton decay focused)

1987-1990 - solar neutrino deficit measurements

1989 

Foreword

⇤p � 2.6� 1032 yr (1)

⇤p � 8.5� 1032 yr (2)

⇤p � 8.2� 1033 yr (3)

Qp +Qe�

Qp
< 10�21 (4)

MG/MW ⇥ 1013 (5)

mf/m� ⇥ 107÷13 (6)

Mm = ��1
G MG (7)

MR ⇥
��
⇥

⇥2

Y10
M2

B�L

MG
⇤ (8)

� (9)

⇤p � 1033 yr (10)

MU � 1015 GeV (11)

⇤p � 1033 yr =⌅ MG � 1015 GeV (12)

⇤p ⇥ ��1
G

M4
G

m5
p

=⌅ MG � 1015 GeV (13)

MG � 1015 GeV (14)

1990 Solar neutrino deficit confirmation 2002 Nobel prize for Masatoshi Koshiba
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p! ⇡0e+

⇡0 ! 2�

“Golden channel”: pπ = pe  = 459 MeV
pγ/πR = 68 MeV

Proton decay in water
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Main background: ⌫N ! Ne+ + #⇡ inelastic CC scattering of atmospheric neutrinos

Proton decay in water

“Golden channel”:
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- majority of nucleons in oxygen
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Main background: ⌫N ! Ne+ + #⇡ inelastic CC scattering of atmospheric neutrinos
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p! ⇡0e+

⇡0 ! 2�

pπ = pe  = 459 MeV
pγ/πR = 68 MeV

Other complication - nuclear effects
- majority of nucleons in oxygen
- Fermi motion
- pion charge exchange
- absorption

Main background: ⌫N ! Ne+ + #⇡ inelastic CC scattering of atmospheric neutrinos

Other signals
- nuclear recombination - extra 6.3 MeV photon
- neutron capture at a dope (Gd, ...)

Proton decay in water

“Golden channel”:
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“Silver channel”: p! K+⌫ pK = 340 MeV

Proton decay in water
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“Silver channel”: p! K+⌫ pK = 340 MeV Kaons don’t shine !

- single cone - 2 EM cones
- little opposite-side activity

Proton decay in water
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“Silver channel”: p! K+⌫ pK = 340 MeV Kaons don’t shine !

- single cone - 2 EM cones
- little opposite-side activity

About one order of magnitude less sensitive than p! ⇡0e+

Proton decay in water
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No way to produce in lab, only cosmics + Callan-Rubakov effect
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Monopoles

• galactic magnetic field depletion

• pulsar stability

• proton stability

Freese, Turner

No way to produce in lab, only cosmics + Callan-Rubakov effect

Experiment: 

Theory: 

MACRO 2001 (Gran Sasso)�M (Earth)
exp. . 10�16 cm�2sr�1s�1

�M (Earth)
theory

. 10�22 ⇠ 10�27 cm�2sr�1s�1

Upper limits on the flux density around Earth
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Monopoles

Price et al., 1975 PRL August 25N.B. early (fake) monopole-like events

• galactic magnetic field depletion

• pulsar stability

• proton stability

Freese, Turner

No way to produce in lab, only cosmics + Callan-Rubakov effect

Experiment: 

Theory: 

MACRO 2001 (Gran Sasso)�M (Earth)
exp. . 10�16 cm�2sr�1s�1

�M (Earth)
theory

. 10�22 ⇠ 10�27 cm�2sr�1s�1

Upper limits on the flux density around Earth
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Sample 2-loop running
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Sample 2-loop running

Note the “triangle of death”


