

Detection of Ultra High Energy Cosmic Rays

Fluorescence and Microwave technique

Detection techniques at EeV energies

surface array of particle detectors (Čerenkov water tanks, scintillators)
 + 100% duty cycle

air fluorescence telescopes

- + direct observation of longitudinal profile => maximum of the shower development
- -- emission in near UV, limited to dark moonless nights 15% duty cycle (at most)
- -- faint isotropic emission (~ 5 ph/MeV deposited) => usable above 10^{17} eV

Fluorescence technique

- secondary shower particles interact with nitrogen molecules
- nitrogen de-excites by emitting photons in 300 400 nm range
- the amount of emitted light should be proportional to the deposited energy
- dependent on the pressure, temperature and humidity at the production region
- fluorescence model has to be measured in laboratory

Current fluorescence detectors: AUGER FD, TA, (ASHRA) previous: Fly's Eye, HiRes future: JEM-EUSO (ISS) space observation

Disclaimer:

Technically the process should be called **scintillation**, i.e. light emission caused by ionizing particles as opposed to **fluorescence** – light emission induced by absorption of photons at different wavelength

AIR FLuorescence Yield

idea: in 2002, within the Auger community

- available models did not have sufficient precision
- temperature and humidity dependence ignored

AIRFLY scientific goal:

- energy dependence in wide energy range
- relative pressure, temperature and humidity dependence
- nitrogen emission spectrum with high resolution
- absolute fluorescence yield

The only experiment designed to measure the complete fluorescence yield model

Energy dependence

 energy dependence proved in wide energy range BTF (Frascati linac) 50 – 450 MeV AWA (Argonne Wakefield accelerator) 3 – 15 MeV Argonne electron van de Graaff 0.5 – 3 MeV APS (Advanced Photon Source) 6 – 30 keV

Note: critical energy of electrons in air is $\sim 80 \text{ MeV} =>$ shower maximum

Energy dependence

 Proportionality of fluorescence yield to deposited energy at few %

NIM A 597 (2008) 46

Pressure dependence of 337 nm line

► L.O.T. Oriel MS257, Δλ = 0.1 nm

rel. Intensity

AIRFLY spectrum

***** 34 band intensities measured (relative to the 337 nm line)

AIRFLY spectrum

Relative pressure dependence of the spectrum

- 34 band intensities measured (relative to the 337 nm line)

using p' 337 previously measured

characteristic pressure of all resolved lines

Astropart. Phys. 28 (2007) 41

Relative humidity dependence

(hPa)

 1.28 ± 0.08

 1.27 ± 0.12

 0.33 ± 0.03

0.13

 $p_{\mathrm{H_2O}}$

Relative temperature dependence

Temperature chamber with dry ice cooling and polystyrene walls - produced in FZU

$$\frac{H_{\lambda}(T)}{H_{\lambda}(T_0)} = \left(\frac{T}{T_0}\right)^{\alpha_{\lambda}}$$

α = 0 usual assumption in UHECR (no T dependence of the collisional cross sections)

Absolute yield of 337 nm line

new idea: normalize to a well known process - Cerenkov emission

measure one line and use it to normalize the whole spectrum

Absolute yield of 337 nm line

new idea: normalize to a well known process - Cerenkov emission

measure one line and use it to normalize the whole spectrum

Full MC simulation of the ratio with nominal FLY is compared to the ratio measured in laboratory

Absolute yield of 337 nm line

new idea: normalize to a well known process - Cerenkov emission

measure one line and use it to normalize the whole spectrum

photocathode nonuniformity would affect strongly the ratio
 integrating sphere would eliminate the bias

Absolute calibration with two independent methods: Čerenkov and laser light

Veto Downst.

Signal PMT

Veto Upstream

1111111h."

0

Acceptance counter

Absolute yield of 337 nm line

Total simulation of the experiment

- * using version Geant4.9.2.p02
- Standard electromagnetic processes (protons 120 GeV)
- Cerenkov process implemented by Geant4
- G4ScintillationProcess simulates the fluorescence – nominal yield 20 ph/MeV sampled from the AIRFLY spectrum
- → 337 nm line forms 25.75% of the spectrum
- Cut in range 1 mm particles with shorter range deposit all their energy on the spot

Independent calibration using 337 nm laser

Trigo PMT NIST Calibrated Probe (5%)

attenuators

Integrating sphere known transmission

Absolute yield of 337 nm line

- three different measurements with different statistics
- performed in Nitrogen to increase the statistics
- Ratio Nitrogen/Air (337nm)
 - Measured at AWA Argonne r = 7.35±0.08
 - Confirmed in Fermilab setup

(dry air, 1013 hPa, 293 K)

Absolute yield of 337 nm line Systematic uncertainties

Fluo/Cere ratio

Total	3.7%	Total	6%
- energy deposit	~ 2.0%	 energy deposit 	~ 2.0%
- background subtraction	~ 1.0%	 background subtraction 	~ 1.0%
- filter transmittance	~ 2.0%	- geometry	~ 0.3%
- sphere λ dependence	~ 1.0%	- N ₂ /Air ratio	~ 1.0%
- N ₂ /Air ratio	~ 1.0%	- Monte Carlo statistics	~ 1.0%
- Monte Carlo statistics	~ 1.0%	 integrating sphere efficiency 	~ 0.9%
- PMT quantum efficiency	~ 1.0%	- calibration sphere transmission	~ 0.8%
- sphere reflectivity	~ 0.9%	- laser probe calibration	~ 5.0%

Astroparticle Physics 42 (2013) 90-102

M. Boháčová 12. 12. 2013

Laser calibration

SYSTEMATIC UNCERTAINTIES OF THE AUGER ENERGY SCALE

Absolute fluorescence yield	3.4%	uncor	taintias an
Fluores. spectrum and quenching param.	1.1%		
Sub total (Fluorescence Yield)	3.6%	14% previo	bus energy
Aerosol optical depth	3% ÷ 6%		scale
Aerosol phase function	1%		
Wavelength dependence of aerosol scattering	0.5%		
Atmospheric density profile	1%		
Sub total (Atmosphere)	3.4% ÷ 6.2%	5% ÷ 8%	
Absolute FD calibration	9%	immerce	mont in coch
Nightly relative calibration	2%	improver	nent in each
Optical efficiency	3.5%	sector	with the
Sub total (FD calibration)	9.9% *	9.5% exception	n of FD cal.
Folding with point spread function	5%	(largest c	ontribution)
Multiple scattering model	1%	work in	progress to
Simulation bias	2%	red	uce it
Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%	100	
Sub total (FD profile rec.)	6.5% ÷ 5.6%	10%	
Invisible energy	3% ÷ 1.5%	4%	
Statistical error of the SD calib. fit	0.7% ÷ 1.8%		
Stability of the energy scale	5%		
TOTAL	1.40/	229/	

Electron Light Source (ELS)

Precise measurement of Energy of UHECR is most important

Proposed a new calibration for <u>Fluorescence</u> <u>Detectors</u> (FD) of the <u>Telescope</u> <u>Array</u> (TA) = use <u>Electron Beam from</u> <u>LINAC(ELS)</u> near <u>FD</u> site

ltem	systematic error of FD
Fluorescence Yield	11 %
Detector	10 %
Atmosphere	11 %
Reconstruction	10 %
Total Systematic Error	21 %

Known beam energy and current = We can calculate energy deposit in the air We can calibrate all of FD calibration constant = End-to-End Calibration

33rd ICRC, July2-9, 2013, Rio de Janeiro-Brazil

Telescope Array linac comparison

Correction & Systematics

(1) Based on TA-FY model = Kakimoto modified + FLASH

Measured FY/TA-FY = $1.18 \pm 0.01(stat) \pm 0.18(syst)$

TA-FY = 16.4 ph/MeV@300-420nm,1013hPa,293K 4.29ph/MeV@337nm,1013hPa,293K TA-FY has ~10% systematic uncertainty

(2) Based on Common Model FY 2012 (Absolute Yield is AirFly)

Measured FY/CM-FY2012 = 0.96 ± 0.01(stat) ± 0.15(syst)

337nm FY of CM-FY2012 = 5.61 ph/MeV@ 1013 hPa,293K

CM-FY2012has ~4% systematic uncertainty

Tatsunobu Shibata Institute for Cosmic Ray, University of Tokyo

Air Microwave technique

- fluorescence technique have been mastered
- Iow UHECR flux calls for an improved duty cycle
- detection of showers in another range e.g. GHz region would not be affected by weather or daylight - much increased duty cycle

proposed mechanism: Molecular Bremsstrahlung Emission (MBR)

- EAS particles dissipate energy through ionization
- → Produces plasma with $T_{2} \sim 10^{4}$ - 10^{5} K
- Low energy tail of free electrons produce Bremsstrahlung emission in microwave regime from scattering interactions with neutral air molecules
- Trace number of shower particles as in FD
- Emission is unpolarized and isotropic

Potential exists for an FD-like detection technique capable of measuring the shower's longitudinal development with nearly 100% duty cycle, limited atmospheric effects and low cost (ability to cover large area)

Previous Beam Measurements

P.W. Gorham *et al.*, "Observations of microwave continuum emission from air shower plasmas", Phys. Rev .D. **78**, 032007 (2008)

Previous Beam Measurements

P.W. Gorham *et al.*, "Observations of microwave continuum emission from air shower plasmas", Phys. Rev .D. **78**, 032007 (2008)

Microwave Detection of Air showers MIDAS

- Use 4.5m dish already installed at University of Chicago
- extended C-band feeds, 1.5° field of view
- ✤ 50 channels 15° total field of view
- 100 ns resolution
- FADC acquisition with FPGA trigger

Detection threshold using Gorham et al. flux:

 $E_{quad} \sim 2 \times 10^{18} \text{ eV}$ $E_{lin} \sim 10^{19} \text{ eV}$

Plasma properties (density) determine level of signal coherence Fully coherent plasma: $P_{tot} = (N_e)^2 \times P_1$ Incoherent plasma: $P_{tot} = N_e \times P_1$

MIDAS Absolute Calibration

Astrophysical sources provide a calibration of system temperature

Microwave Emission Limits 95% confidence exclusion with 5-pixel search and 61 days of livetime data from University of Chicago campus

M. Boháčová 12. 12. 2013

Karlsruhe experiment CROME

Radomír Šmída et al.

- Segmented 340 cm dish
- Prime focus with 4 receivers
- Vertical orientation
- In the middle of Kascade Grande
- Trigger from KG every 5 minutes
- Several events detected in coincidence with KG
- All compatible with coherent Čerenkov emission
- no isotropic emission observed

MAYBE

- m3 RF anechoic chamber, Absorber atten. >30 dB above 1 GHz
- Instrumented with three feed horns
- Main Receiver 850 MHz to 26.5 GHz R&S Log Periodic Antenna
- Both Pols accessible through physical rotation of antenna
- 3 Miteq low noise amplifiers and low loss coax cable
- Amplifiers operate well outside stated frequency range
- 3 MeV Van de Graaff at Argonne National Lab, Chemistry Division
- Electrons below Cerenkov threshold
- Pulse length 5 ns to 1 ms
- 1 µs pulse for most data taking

MAYBE

Spectrum

- Emission is unpolarized with a flat spectrum from 1 to 15 GHz
- Consistent with expectations for Molecular Bremsstrahlung emission
- Linear scaling with energy observed
- Several orders of magnitude lower signal than previous measurements
- Possible Cerenkov contamination in Gorham et al. ?

Air Miccrowave Yield AMY

Measurement of the MBR at the Frascati linac

Roma ToV	C. Di Giulio, G. Rodriguez, G. Salina, V. Verzi
Lecce	G. Cataldi, M. R. Coluccia, P. Creti, I. De Mitri, D. Martello, L. Perrone
Aquila	M. Iarlori, S. Petrera, V. Rizi
Genova	R. Pesce
Frascati	B. Buonomo, L. Foggetta, G. Mazzitelli, P. Valente
Prague	M. Bohacova
Chicago	P. Facal, M. Monasor, P. Privitera, C. Williams
Santiago	J. A. Muniz, D. Garcia-Fernandez
Madrid	J. R. Vazquez
Granada	I.C. Maris
IPNO	F. Salamida
LPNHE	M. Blanco, R. Gaior, A. Letessier-Selvon, M. Settimo
LPSC	K. Louedec, S. Le Coz

Air Miccrowave Yield AMY

Measurement of the MBR at the Frascati linac

- ✤ 510 MeV electrons
- ✤ up to 1010 e-/bunch
- ✤ 10ns, 3ns, 1.5ns bunches
- 1Hz repetition rate
- LINAC frequency 2.856 GHz

- anechoic Faradaychamber 2m x 2m x 4m
- copper walls
- microwave absorber lining

Air Miccrowave Yield AMY Interaction target

- allows to maximize energy deposit and minimize coherence
- \rightarrow 6 alumina modules 95% Al₂O₃
- remotely controlled

Air Miccrowave Yield AMY Bunch length

Air Miccrowave Yield AMY

- the Čerenkov radiation is polarized in the plane defined by the Poynting vector and the electron velocity
- antenna polarisation orthogonal to this plane (CROSS-POL) -> minimize Čerenkov
 - parallel to this plane (CO_POL) -> maximize Čerenkov

as suggested in the P.Gorham et al. paper

26 db in power

Air Miccrowave Yield AMY

- the Čerenkov radiation is polarized in the plane defined by the Poynting vector and the electron velocity
- antenna polarisation orthogonal to this plane (CROSS-POL) -> minimize Čerenkov
 - parallel to this plane (CO_POL) -> maximize Čerenkov

as suggested in the P.Gorham et al. paper

Air Microwave Yield AMY

FREQUENCY SPECTRUM

FFT of the oscilloscope trace (dominated by linac frequency and harmonics)

POWER IN DIFFERENT FREQUENCY BANDS

