

Detection of Ultra High Energy Cosmic Rays

Fluorescence and Microwave technique

Detection techniques at EeV energies

surface array of particle detectors (Čerenkov water tanks, scintillators) + 100% duty cycle

air **fluorescence telescopes**

- + direct observation of longitudinal profile => maximum of the shower development
- -- emission in near UV, limited to dark moonless nights 15% duty cycle (at most)
- -- faint isotropic emission (\sim 5 ph/MeV deposited) => usable above 10¹⁷ eV

Fluorescence technique

- secondary shower particles interact with nitrogen molecules
- \rightarrow nitrogen de-excites by emitting photons in 300 400 nm range
- \rightarrow the amount of emitted light should be proportional to the deposited energy
- \rightarrow dependent on the pressure, temperature and humidity at the production region
- \rightarrow fluorescence model has to be measured in laboratory

Current fluorescence detectors: **AUGER FD**, **TA**, (ASHRA) previous: **Fly's Eye**, **HiRes** future: **JEM-EUSO** (ISS) space observation

Disclaimer:

Technically the process should be called **scintillation**, i.e. light emission caused by ionizing particles as opposed to **fluorescence** – light emission induced by absorption of photons at different wavelength

AIR FLuorescence Yield

idea: in 2002, within the Auger community

- available models did not have sufficient precision
- temperature and humidity dependence ignored

AIRFLY scientific goal:

- energy dependence in wide energy range
- relative pressure, temperature and humidity dependence
- nitrogen emission spectrum with high resolution
- absolute fluorescence yield

The only experiment designed to measure the complete fluorescence yield model

Energy dependence

 energy dependence proved in wide energy range BTF (Frascati linac) 50 – 450 MeV AWA (Argonne Wakefield accelerator) 3 – 15 MeV Argonne electron van de Graaff 0.5 – 3 MeV APS (Advanced Photon Source) 6 – 30 keV

Note: critical energy of electrons in air is \sim 80 MeV => shower maximum

Energy dependence

 Proportionality of fluorescence yield to deposited energy at few %

NIM A 597 (2008) 46

Pressure dependence of 337 nm line

rel. Intensity

AIRFLY spectrum

34 band intensities measured (relative to the 337 nm line)

AIRFLY spectrum

Relative pressure dependence of the spectrum

34 band intensities measured (relative to the 337 nm line)

using p' 337 previously measured

characteristic pressure of all resolved lines

Astropart. Phys. 28 (2007) 41

Relative humidity dependence

M. Boháčová 12. 12. 2013

 $p'_{\text{H}_2\text{O}}$ (hPa)

 1.28 ± 0.08

 1.27 ± 0.12

 0.33 ± 0.03

 0.13

Relative temperature dependence

Temperature chamber with dry ice cooling and polystyrene walls - produced in FZU

$$
\frac{H_{\lambda}(T)}{H_{\lambda}(T_0)} = \left(\frac{T}{T_0}\right)^{\alpha_{\lambda}}
$$

 α = 0 usual assumption in UHECR (no T dependence of the collisional cross sections)

Absolute yield of 337 nm line

new idea: normalize to a well known process - Cerenkov emission

 \rightarrow measure one line and use it to normalize the whole spectrum

Absolute yield of 337 nm line

new idea: normalize to a well known process - Cerenkov emission

 \rightarrow measure one line and use it to normalize the whole spectrum

Full MC simulation of the ratio with nominal FLY is compared to the ratio measured in laboratory

Absolute yield of 337 nm line

new idea: normalize to a well known process - Cerenkov emission

 \rightarrow measure one line and use it to normalize the whole spectrum

 \rightarrow photocathode nonuniformity would affect strongly the ratio => integrating sphere would eliminate the bias

Absolute calibration with two independent methods: Čerenkov and laser light M. Boháčová 12. 12. 2013

Veto Downst.

Signal PMT

Veto Upstream

IIIIIIIIIII

 $|O|$

THE M

Absolute yield of 337 nm lines

Acceptance
counter

÷

Absolute yield of 337 nm line

Total simulation of the experiment

- using version Geant4.9.2.p02
- Standard electromagnetic processes (protons 120 GeV)
- Cerenkov process implemented by Geant4
- G4ScintillationProcess simulates the fluorescence – nominal yield 20 ph/MeV sampled from the AIRFLY spectrum
- 337 nm line forms 25.75% of the spectrum
- $\frac{1}{2}$ \div Cut in range 1 mm – particles with shorter range deposit all their energy on the spot

Signal PMT

AIRFLY RESULTS **Independent calibration** using 337 nm laser

Veto Upstream Acceptance

NIST Calibrated Probe (5%) PMT

Absolute Younger yield of 337 nm line

attenuators

counter

Signal PMT

 \mathbb{R}^n is the set of \mathbb{R}^n .

Integrating sphere

known transmission

Absolute yield of 337 nm line

- **three different measurements with different statistics**
- **performed in Nitrogen to increase the statistics**
- **Ratio Nitrogen/Air (337nm)**
	- **Measured at AWA Argonne r = 7.35±0.08**
	- **Confirmed in Fermilab setup**

(dry air, 1013 hPa, 293 K)

Absolute yield of 337 nm line **Systematic uncertainties**

Fluo/Cere ratio Laser calibration

Astroparticle Physics 42 (2013) 90-102

SYSTEMATIC UNCERTAINTIES OF THE AUGER ENERGY SCALE

Electron Light Source (ELS)

Precise measurement of Energy of UHECR is most important

Proposed a new calibration for Eluorescence Detectors (FD) of the Telescope \triangle rray (TA) = use **Electron Beam from LINAC(ELS)** near FD site

Known beam energy and current = We can calculate energy deposit in the air We can calibrate all of FD calibration constant = End-to-End Calibration

33rd ICRC, July2-9, 2013, Rio de Janeiro-Brazil

Telescope Array linac comparison

Correction & Systematics

(1) Based on TA-FY model = Kakimoto modified + FLASH

Measured FY/TA-FY = $1.18 \pm 0.01(stat) \pm 0.18(syst)$

TA-FY = 16.4 ph/MeV@300-420nm,1013hPa,293K 4.29ph/MeV@337nm,1013hPa,293K TA-FY has ~10% systematic uncertainty

(2) Based on Common Model FY 2012 (Absolute Yield is AirFly)

Measured FY/CM-FY2012 = 0.96 ± 0.01 (stat) ± 0.15 (syst)

337nm FY of CM-FY2012 = 5.61 ph/MeV@ 1013 hPa,293K

CM-FY2012has ~4% systematic uncertainty

Tatsunobu Shibata Institute for Cosmic Ray, University of Tokyo

Air Microwave technique

- **+ fluorescence technique have been mastered**
- **+ low UHECR flux calls for an improved duty cycle**
- detection of showers in another range e.g. GHz region would not be affected by weather or daylight - much increased duty cycle

proposed mechanism: Molecular Bremsstrahlung Emission (MBR)

- EAS particles dissipate energy through ionization
- Produces plasma with $T_{\text{e}} \sim 10^4$ -10⁵K
- Low energy tail of free electrons produce Bremsstrahlung emission in microwave regime from scattering interactions with neutral air molecules
- \rightarrow Trace number of shower particles as in FD
- Emission is unpolarized and isotropic

Potential exists for an FD-like detection technique capable of measuring the shower's longitudinal development with nearly 100% duty cycle. Iimited atmospheric effects and low cost (ability to cover large area) shower's longitudinal development with nearly 100% duty cycle, limited

Previous Beam Measurements

M. Boháčová 12. 12. 2013

P.W. Gorham et al., "Observations of microwave continuum emission from air shower plasmas", Phys. Rev.D. 78, 032007 (2008)

Previous Beam Measurements

P.W. Gorham et al., "Observations of microwave continuum emission from air shower plasmas", Phys. Rev.D. 78, 032007 (2008)

Microwave Detection of Air showers MIDAS

- **→ Use 4.5m dish already installed** at University of Chicago
- **→ extended C-band feeds, 1.5° field of view**
- \div 50 channels 15 \degree total field of view
- ► 100 ns resolution
- **► FADC acquisition with FPGA trigger**

Detection threshold using Gorham et al. flux:

 $E_{\text{quad}} \sim 2 \times 10^{18} \text{ eV}$ $E_{\text{lin}} \sim 10^{19} \text{ eV}$

Plasma properties (density) determine γ determing Plasma properties (density) determine level of signal coherence Fully coherent plasma: $P_{tot} = (N_e)^2 \times P_1$ Incoherent plasma: $P_{tot} = N_e \times P_{1}$

MIDAS Absolute Calibration

Astrophysical sources provide a calibration of system temperature

Microwave Emission Limits 95% confidence exclusion with 5-pixel search and
61 days of livetime data from University of Chicago campus

M. Boháčová 12. 12. 2013

Karlsruhe experiment **CROME**

Radomír Šmída et al.

- \rightarrow Segmented 340 cm dish
- \rightarrow Prime focus with 4 receivers
- **→ Vertical orientation**
- In the middle of Kascade Grande
- Trigger from KG every 5 minutes
- Several events detected in coincidence with KG
- All compatible with coherent Čerenkov emission
- no isotropic emission observed

MAYBE

- m3 RF anechoic chamber, Absorber atten. >30 dB above 1 GHz
- \rightarrow Instrumented with three feed horns
- Main Receiver 850 MHz to 26.5 GHz R&S Log Periodic Antenna
- Both Pols accessible through physical rotation of antenna
- **→ 3 Miteq low noise amplifiers and low loss coax cable**
- Amplifiers operate well outside stated frequency range
- 3 MeV Van de Graaff at Argonne National Lab, Chemistry Division
- **► Electrons below Cerenkov threshold**
- \rightarrow Pulse length 5 ns to 1 ms
- \div 1 µs pulse for most data taking

MAYBE

Spectrum

- Emission is unpolarized with a flat spectrum from 1 to 15 GHz فيراد
- Consistent with expectations for Molecular Bremsstrahlung emission
Linear scaling with energy observed \rightarrow
- Linear scaling with energy observed $\frac{1}{2}$
- Several orders of magnitude lower signal than previous measurements $\frac{1}{2}$
- Possible Cerenkov contamination in Gorham et al. ? $\frac{1}{2}$

Air Miccrowave Yield AMY

Measurement of the MBR at the Frascati linac

Air Miccrowave Yield AMY

Measurement of the MBR at the Frascati linac

- **→ 510 MeV electrons**
- **→ up to 1010 e-/bunch**
- \div 10ns, 3ns, 1.5ns bunches
- **→ 1Hz repetition rate**
- **LINAC** frequency 2.856 GHz
- anechoic Faradaychamber 2m x 2m x 4m
- \div copper walls
- **+ microwave absorber lining**

Air Miccrowave Yield AMY **Interaction target**

- allows to maximize energy deposit and minimize coherence
- 6 alumina modules 95% Al $\mathrm{_2 O}_3$
- \rightarrow remotely controlled

Air Miccrowave Yield AMY Bunch length

Air Miccrowave Yield AMY

- \rightarrow the Čerenkov radiation is polarized in the plane defined by the Poynting vector and the electron velocity
- antenna polarisation orthogonal to this plane (CROSS-POL) -> minimize Čerenkov
	- parallel to this plane (CO_POL) -> maximize Čerenkov

as suggested in the P.Gorham et al. paper

26 db in power

M. Boháčová 12. 12. 2013

Air Miccrowave Yield AMY

- \rightarrow the Čerenkov radiation is polarized in the plane defined by the Poynting vector and the electron velocity
- antenna polarisation orthogonal to this plane (CROSS-POL) -> minimize Čerenkov
	- parallel to this plane (CO_POL) -> maximize Čerenkov

as suggested in the P.Gorham et al. paper

Air Microwave Yield AMY

FREQUENCY SPECTRUM

FFT of the oscilloscope trace (dominated by linac frequency and harmonics)

POWER IN DIFFERENT FREQUENCY BANDS

M. Boháčová 12. 12. 2013