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αs FROM HADRONIC τ DECAYS
by NON-POWER PERTURBATION THEORY

• τ is the only known lepton heavy enough to decay into hadrons.

• The total hadronic width is inclusive, which allows an accurate
calculation of the width.

• A very precise method to obtain small npt contributions to αs(M
2
τ )

from hadronic τ decays. BraatenNarisonPich92,LeDibPich92,PDG

• IMPRESSIVE recent achievements in pt QCD: β and Adler function
in massless QCD to 4 loops (good for processes measured at LHC).
WE PROPOSE a new,

• NONPOWER series replacing the standard pt expansion in the αn
s .

• This method can improve the methods of the determination of αs

from hadronic τ decays.
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1.1 Perturbative QED, QCD
Standard perturbative expansions. Asymptotic series

• Before 1952: Expansions in αn were thought justified, analyticity at
α = 0 and around seemed to be evident.

• Now: sigularities are admitted (Dyson, followers), expansions in
special, singular functions appear more suitable, even desirable. We
perform this project.

• Some classes of Feynman diagrams indicate ∼ n! at high n. QED:
Dyson52, QCD: GrossNev74,Lautr,‘tHooft77(79), LeGuillou
Zinn-Justin90,Zakharov92,BigiShifm94,Beneke99,!Minkowski!3.1

• DYSON : Let a divergent series be asymptotic: Strong ambiguity,
2.5, 3. This calls for additional inputs. IC,JF,IV,JPA 42(2009);
Appl.Num.Math. 60(2010).

• RECALL: the series
∑∞

n=0 Fnz
n is called asymptotic to F (z) as

z → 0 on the set S , if the functions RN(z) = F (z) − ∑N
n=0 Fnz

n

satisfy the condition RN(z) = o(zN), for N = 0, 1,..., z → 0, z ∈ S .

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 5/84
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1.2 Perturbative QCD
Summary

• NOTE: Let a function be singular at z = 0; the series in zn may be
asymptotic. E.g.: expand e

−1/z in zn, x > 0. All power terms
vanish. The series is convergent, but not tending to e

−1/z .

• In the hadronic decay of τ , npt power corrections (PC) are sup-
pressed (2.8). BraatenNarisonPich,Nucl.Phys.B373(1992)590.

• Dependence of the coupling αs(µ
2) on mass parameter µ (RGE):

µ2 das(µ
2)

dµ2 ≡ β(as) = −a2
s

∑
k βka

k
s , where as(µ

2) = αs(µ
2)/π

• β-function in massless QCD is known to four βj (loops)

• Adler function in massless QCD; expansion coeffs known to α4
s

• RENORMALONS : Let some classes of Feynman diagrams be
divergent (but compensations among the classes aren’t excluded,
(1),2.2,3.1). Field correlators may be singular at α = 0.

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 6/84
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2.1 Hadronic τ decay
ADLER FUNCTION in massless QCD

• Hadronic width of the τ lepton:
Rτ = Γ[τ→ντ ,had,(γ)]

Γ[τ→ντ ,e,ν̄e ,(γ)]
= Γhad

Γe
= 3.4771 ± 0.0084; (γ) denoting possible

additional photons or lepton pairs ALEPH,HeaFlavAverGrp

• INCLUSIVE: Integrating over s, Rτ = 1
Γe

R m2
τ

0
dΓhad

ds
ds.

• Optical theorem: express
P

had 〈0|Jµ(q)|had〉〈had |J†
ν(q)|0〉, the hadron

production matrix element, in the v.e.v.s of the product of two weak
currents Im 〈0|Jµ(q)J†

ν(q)|0〉. Decomposing the hadron tensor into
Lorentz covariants, we get

i
R

dx e iqx 〈0|T{Jµ(x) J†
ν(0)}|0〉 = (qµqν − q2gµν) Π(s) , Jµ = ψ̄uγµψd

• Adler function: bD(αs) = − s d
ds

h

Π(s)
i

− 1

• (we shall write either bD(αs) or bD(s)).

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 8/84
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2.2 Dominant perturbative QCD correction
τ decay rate. The use of the Cauchy theorem in the s plane to obtain (3)

• In the part of Rτ produced by V or A current, npt corrections are
suppressed. BraatenNarisonPich92, Altarelli: PRECOCIOUS AF.
Rτ , the τ decay rate into light quarks, is:

Rτ = Nc SEW |Vud |2
[

1 + δ(0) + δPC + δ′EW

]
(1)

• Nc is # of quark colours, • SEW and δ′
EW

are EW corrections,
• δ(0) is the dominant pt QCD correction, BrNaPi,LeDibPi92.
• δPC is quark mass and higher dim. operator (condensate) corrections

Rτ ∼ 12π

M2
τ∫

0

ds

M2
τ

(
1 − s

M2
τ

)2(
1 + 2

s

M2
τ

)
Im Π(s) (2)

δ(0) =
1

2πi

∮

|s|=M2
τ

ds

s

(
1 − s

M2
τ

)3 (
1 +

s

M2
τ

)
D̂pert(s) (3)

4

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 9/84
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2.3 Coefficients of standard expansion
ADLER FUNCTION, see bD(αs )

Insert (4) to (3), represented as RG improved series

D̂(s) =

∞∑

n=1

Kn(as(s))
n. (4)

In the MS scheme, for nf = 3, the coeffs Kj calculated up to now
(j = 1, 2, 3, 4) are

K1 = 1, K2 = 1.6398, K3 = 6.3712, K4 = 49.076. (5)

D̂pert(αs) =
∑
n≥1

[
cn,1 +

n∑
k=2

k cn,k lnk−1(−s/µ2)

]
(as(µ

2))n ,

where • cj,1 = Kj , (Baikov2008)
• cn,k for 2 ≤ k ≤ n depend on cn,1 and the coefficients βk ,

µ2 das(µ
2)

dµ2
≡ β(as) = −a2

s

∑

k

βka
k
s , (6)

β0 = 9/4, β1 = 4, β2 = 10.0599, β3 = 47.228. See 1.2
van Ritbergen, Vermaseren, Larin 1997, Czakon 2005
• For special classes of Feynman diagrams, the pt coeffs cn,1 ∼ n!, so

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 10/84
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2.4 Current choices of summation in pt QCD
Summation methods, FOPT ..... (2.2)

• CURRENT CHOICES OF SUMMATION: bD depends on s, bDpert on s

and the renorm.scale µ2 (through αs & the pt logs). Den. a = αs(µ
2)/π,

L = ln(−s/µ2). Choosing a fixed scale µ2 = M2
τ , we get Fixed Order PT,

• FOPT: expand bDFOPT , truncate and put µ2 = M2
τ (Ben11). We get

bDFOPT (a, L) =
P∞

n=1 an
Pn

k=1 kcn,kL
k−1, the cn,1 from Feynman diagrams.

!Badly behaved near the cut; we therefore try Contour Improved PT:

• CIPT: solve the RGE (6),1.2 (nf = 3, four loops are known), µ2 = −s

Piv91,LeDibPich92,11. Insert (4) to (3), integrate. The Taylor expansion
of as(s) is

P

j≥1 ξj(as(s1)
j , the ξj depending on η1 = ln(s/s1) and βj . CI

summation is obtained:

bDCIPT (αs(−s)/π, 0) =
∞

X

n=1

cn,1

„

αs(−s)

π

«n

(7)

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 11/84
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2.5 Discussion. Solution is ambiguous
Renormalons

In conclusion, a set of 1st order linear differential equations for the
functions Dn(aL), see
CONCLUSION: The expansion of B(u) in un has better h.o. properties

than that of D̂(αs) in the αn
s , see sec. 3.

D̂(s) is not unique, being obtained from B(u) by an integral of the
Laplace-Borel type, with a great variety of contours. B(u) has singulari-
ties along the two real semiaxes of the the u-plane
BrownYaffeZhai92; Zakharov92; IC,JF,IVrkocJPA09,ANM10
• u ≥ 2 (IR renormalons),
• u ≤ −1 (UV renormalons), and
• instanton-antiinstanton pairs along the positive real semiaxis.
The integration needs a prescription. We take the PV,

D̂CIPT(s) =
1

β0
PV

∫ ∞

0

exp(
−u

β0as(−s)
)B(u)du. (8)

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 12/84
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3.1 AMBIGUITIES. WATSON‘s LEMMA
1 Large-order behaviours of Φµ,ν

0,c (λ) and of B(u) are different. GENERAL case: µ, ν positive

• bD(αs) is singular at αs = 0, because

• 1/ Some classes of Feynman diagrams have ♣ cn,1 ∼ n!
2/ ’t Hooft 1979
3/ B(u) has renormalons at finite distance from u = 0, see 2.8

• ⇒ But: 1 Possible compensations among classes? See 1.2, 2.2
2 Minkowski?? 1.1

• Asymptotic expansions do not determine the function uniquely:

• WATSON‘s LEMMA (λ is interpreted as 1/αs )

Φµ,ν
0,c (λ) =

Z c

0

exp(−λu
µ)uν−1

B(u)du (9)

with c, µ, ν > 0. Let B(u) ∈ C∞[0, c] and B(k)(0) be limu→0+ B(k)(u).
Let ε satisfy 0 < ε < π/2. Then for λ→ ∞, λ ∈ Sε = | arg λ| ≤ π

2
− ε,

the asymptotic expansion holds:

Φµ,ν
0,c (λ) ∼ 1

µ

∞
X

n=0

λ−(n+ν)/µΓ((n + ν)/µ)
B(n)(0)

n!
. (10)

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 14/84
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3.2 What follows from Watson‘s lemma
2 Large-order behaviours of bDc (αs ) and of B(u) are different. SPECIAL case µ = ν = 1

• NOTE: The r.h.s. of (10) is c independent and the integration
contour from 0 to c is arbitrary, see Caprini, JF, Vrkoč 09, 10
⇒ INFINITE AMBIGUITY OF PT ⇐

• For µ = ν = 1 and c → ∞, the Φ0,c are special cases of (9, 10):

D̂c(αs) =

∫ c

0

exp(−u/αs)B(u)du (11)

Take B(u) holomorphic, except the rays u ≤ −1 and u ≥ 2, see
2.10. If B(u) =

∑∞
0 unB(n)(0)/n!, then (11) (principal value) and

D̂c(αs) ∼
∞∑

n=0

αn+1
s Γ(n + 1)

B(n)(0)

n!
(12)

• NOTE Γ(n + 1) in (12): The expansion coeffs for B(u) behave by
1
n! tamer than those in (12) for D̂c(αs). Convergence radius is 6= 0,
the point u = 0 lies INSIDE convergence circle. See 3.1, 3.3, 5.3.

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 15/84
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3.3 Power expansions: Choose B(u) rather than D̂(αs)
Watson‘s lemma, Discussion

(12): The coeffs for bD(αs) behave ∼ n! at high n. Those for B(u) have a
better behaviour. See 3.1, 3.2.

• 1 Example: Set B(u) = un. The r.h.s. of (11) becomes n!αn+1
s :

♣ un in the u plane generates n!αn+1
s in the αs plane ♣

• 2 RECALL (2.9): QED is analogous (Dyson 1952), but NUMERICAL
precision is not affected, α being small at the usual scales.

• 3 QCD: αs(M
2
τ ) is big, so these facts DO MATTER in practical predictions

• 4 WE KNOW : It is better to deal with B(u), which is easier to handle.

• 5 Thus, to reach 2.5(blue), we arrive at the ♣CONCLUSION:

• B(u) is preferable to bD(αs). To expand B(u), FIND AN OPTIMAL SET
of expansion functions yielding

• The fastest convergence rate at high n and
• A high (numerical) accuracy at low n.

• Let me disclose: The function set are NOT the POWERS un; see below

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 16/84
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3.4 Special case: Adler function D̂(s)
B(u) encodes the high-order increase of coeffs by singularities in the u-plane. See 2.8, 6.5

Take B(u) expanded in un :

B(u) =
∞
P

n=0

bnu
n, bn =

cn+1

βn
0 n!

⇒ bD(s) = 1
β0

∞
R

0

e−u/(β0as (s)) B(u) du

• B(u) has singularities along u ≤ −1 and u ≥ 2 (UV and IR renormalons)

• Laplace-Borel integral is not defined, a prescription is needed:

bD(s) =
1

β0
PV

∞
Z

0

e
−u/(β0as (s)) B(u) du

.
• Exact results: B(u) ∼ (1 + u)−γ1 and B(u) ∼ (1− u/2)−γ2 , where γ1, γ2

are known; see 7.1, 8.1 Mueller 1985, Beneke, Braun, Kivel 1997

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 17/84
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4.1 Adjusting the expansion functions to the singularities
Standard power series and the non-power ones, see eg 8.7

♠ Standard POWER SERIES Beneke Jamin [BJ, 2008]:

• ♣EXPAND bD(αs) in POWERS of αs , CONFRONT FOPT with CIPT.

• RESULT [BJ]: ♣ FOPT is superior to CIPT

♠ NONPOWER SERIES [CaFi, 2009]:

• REPLACE the αn
s by the Wn(αs) having similar singularities as bD(αs).

• NON-POWER Perturbation Theory (NPPT) consists of:
• optimal conf. mapping (OCM, CiFi, CaFi, 3.4) of the Borel u-plane, and
• singularity softening (SS, SoSu) in terms of the Wn(αs) functions.

• ♣EXPAND bD(αs) in the Wn(αs), CONFRONT FOPT with CIPT.

• RESULT [CaFi]: ♣ CIPT is superior to FOPT (opp. to [BJ], see 8.7).

• WHAT ABOUT B(u)?

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 19/84
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4.2 A NEW EXPANSION of D̂(αs) is needed
1 Symmetria symmetriam invocat

• The singularities of bD(αs), if encoded in renormalons at FINITE
distance from u = 0, are located AT αs = 0.

• A serious defect of Standard PT: The singular bD(αs) is expanded in the
αn

s , which, analytic in αs , DO NOT SEE the physics hidden in the singul-
arities of bD. So, some ESSENTIAL PHYSICS may be INVISIBLE to stan-
dard PT. (L‘essentiel est invisible pour la theorie des perturbations.) Each

approximant is analytic, in contrast to bD(αs).

• THE FORM of our expansion functions depends on which property of bD ,
a physical quantity, is considered important: symmetry, analyticity,
singularities, etc. We therefore have to construct expansion functions
having the same property:

♣ Every construction calls for specific building constituents,
♣ Every function calls for specific expansion functions

See also 9.1 - 9.5.

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 20/84
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4.3 A NEW EXPANSION of D̂(αs) is needed
2 Singularitas singularitatem invocat

• Apply this to the SINGULAR bD(αs). Expand bD(αs) in a set of functions

whose singularities resemble those of bD(αs) as much as possible:

• Expansion of a SINGULAR function bD(αs) calls for
SINGULAR expansion functions, Wn(αs) (*).

• NOTE: The Standard PT does NOT observe the demand (*).

Indeed, bD(αs) is SINGULAR,
while the expansion functions are αn

s , i.e., ANALYTIC .

• This is why the powers αn
s are not suited for expanding the singular

bD(αs). We therefore abandon the powers αn
s , and build up

Non-Power Perturbation Theory (NPPT),
in which the rule (*) is observed (see 8.1, 10.4).

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 21/84
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4.4 APPLY (*) to B(u), rather than to D̂(αs)
3 Preparation

• INSTEAD of expanding ♠ ADLER FUNCTION bD(αs) in αn
s ,

we shall expand its ♠ BOREL TRANSFORM B(u) in un

• WHY do we do so? WHAT IS BETTER, and why? The expansion of bD

and B behaves like n!αn+1
s and un respectively. In more detail:

• REMIND Watson‘s lemma. You have (page 3.2) two series:

B(u) =
P∞

0 ukB(k)(0)/k!

bD(αs) ∼
∞

X

k=0

αk+1
s Γ(k + 1)

B(k)(0)

k!
.

Note the factor Γ(k + 1). We use the formula

1/ρB = lim sup
n→∞

n
p

|an|,

for 1/ρB , and 1/ρD = lim supn→∞
n

p

n!|an| for 1/ρD , where
ρB and ρD is the convergence radius of the two series respectively. If ρB is
finite nonvanishing (= 1 for the UV renormalon), ρD is zero, and the

expansion of bD(αs) diverges for every αs 6= 0.

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 22/84
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4.5 APPLY (*) to B(u), rather than to D̂(αs)
4 Expansion of a SINGULAR function B(u) calls for SINGULAR expansion functions, (w̃(u))n

• Unlike in the αs -plane, the boundary of H in the u-plane NEVER
TOUCHES the orign. The expansion of B(u) in un has much a milder
h.o. behaviour than that of n!αn

s (factor n!). There are two steps of
improvement:

• STEP 1: Do NOT EXPAND bD(αs) in αn
s ,

but rather EXPAND B(u) in un. HOWEVER,

• STEP 2 is an improvement of Step 1: EXPAND B(u) NOT in un, but in

the (w̃(u))n (OCM, optimal conformal mapping), w̃(u) having the
same location of singularities as B(u).

• CONCLUSION: Rather than in un, expand B(u) in the (w̃(u))n, since
w̃(u) maps H onto the DISK |w̃(u)| ≤ 1. INTUITIVELY : As w̃(u) and
B(u) have identical location of singularities, the expansion of B in the w̃n

is simpler and easier to handle than that in the un. EXACTLY sec. 6. To
make full use of analyticity,

USE OCM in the Borel plane.

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 23/84
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4.6 OCM makes H COINCIDE with the convergence disk
see 4.8, 6.5 and the sections 5 and 6

• ♣ Let H be the analyticity domain of B(u) in the u-plane,
♣ Let Gw be a subset (region) of H: Gw ⊂ H,
♣ Let w(u) map Gw conformally onto |w(u)| < 1
♣ Let w̃(u) map Gw̃ = H conformally onto |w̃(u)| < 1

• In QCD, the singularities of B(u) are located along the rays u > 2 and
u < −1 (IR and UV renormalons). H is the u-plane cut along the rays;
see 4.10 and 6.5 for details

• ***IF the power series of a function analytic in u is DIVERGENT at some
u ∈ H, convergence is restored by OCM at that point***.

• ***IF the power series is CONVERGENT at some u ∈ H, the convergence
rate is enhanced by OCM at that point***.

• This is impossible in the αs -plane, where the point αs = 0 MAY APPEAR

ON THE BOUNDARY of the analyticity domain. See 4.8. This is why
B(u) should be preferred to bD(αs), and

Expansions of B(u) in (w̃(u))n should be preferred to those in un.

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 24/84
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4.7 Discussion
See also 2.10, 4.5, 4.6, 6.5 and sec. 5 for details

• Take Gw ⊂ H. If Gw = H, we write w̃(u), Gw̃ . The equality Gw̃ = H
implies that the whole doubly-cut u-plane (which is simply-connected) is
mapped onto the |w̃(u)| < 1 disk, w̃(u) having the same LOCATION of
singularities as B(u). The disk |w̃(u)| < 1 is the

DISK OF CONVERGENCE of the expansion of B(u) in the (w̃(u))n,
and IS IDENTICAL

with H, the REGION OF ANALYTICITY of B(u) = B(u(w̃)).

• See Lemma 1 and Lemma 2, sec. 6

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 25/84
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4.8 Power expansions and conformal mappings
Optimal mapping, optimal expansion

• 1 Let bD(αs) (analytic, but with singularities) be expanded in powers of
αs . Assume that αs = 0 lies on (or near) the boundary of the analyticity
domain. How to get along the bad convergence properties?

• 2 The expansion coeffs of bD(αs) grow fast, Γ(k + 1)B(k)(0)
k!

=B(k)(0) at

high orders, while those of B(u) behave 1
k!

times tamer, B(k)(0)
k!

.

• 3 B(u) is holomorphic in H, in the u-plane cut along u > 2 (IR) and
u < −1 (UV). Note that
♣w̃(u) CONFORMALLY MAPS H ONTO the disk |w̃(u)| < 1 ♣

• 4 Expand B(u) in (w̃(u))n, NOT in un. This expansion
is CONVERGENT in the whole Gw̃ = H, and

has the FASTEST CONVERGENCE RATE at all points of H.

• 5 The mapping w̃(u) and the expansion of B(u) in powers of w̃(u) are
called OPTIMAL; Ciulli & JF, Nucl.Phys.1961 See below sec. 7.
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4.9 Merits and virtues of (OCM)
What does the method of optimal conformal mapping (OCM) of the region of analyticity do?

• OCM enlarges the region of convergence, and

• In the original region of convergence, OCM enhances the convergence rate
of the original expansion

• INTUITIVE EXPECTATION:
♠ THE LARGER Gw , THE FASTER THE CONVERGENCE RATE ♠

PROOF: Ciulli,Nucl.Phys.24,465(1961), CaFi, Phys.Rev.D84(2011)

• Take w(u) such that Gw = Gw̃ = H (OCM), Gw not exceeding H; otherwi-
se a singularity is pressed inside the circle, and convergence deteriorates.

• OCM maps H onto the disk |w̃(u)| < 1. OCM is important, the
expansion of B(u) in the (w̃(u))n has the fastest convergence rate.

• WE CONCLUDE: any singularity of B(u) located at finite nonvanish-

ing distance from u = 0 produces a singularity of bD(αs) at αs = 0.

This happens if, e.g., B(u) has renormalons. If bD(αs) has no singularity
at αs = 0, all renormalons are at infinite distance from u = 0.
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5.1 Optimal conformal mapping in the u-plane

• Map the cut u-plane onto the disk |w | < 1 in the plane
w = w̃(u), with w̃(0) = 0 (see also 3.4,10.4)

w̃(u) =
√

1+u−
√

1−u/2
√

1+u+
√

1−u/2

• The series B(u) =
P

cn wn, w = w̃(u)

• converges in the whole u-plane up to the cuts

• best asymptotic convergence rate for all interior points

• makes full use of our knowledge of the location of the singularities of B(u)

• suggests the expansion: bD(αs) =
P

n

cn
1

β0
PV

∞
R

0

e−u/(β0as (s))(w̃(u))ndu

What are the advantages of OCM in applications?
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5.2 Lemmas 1 and 2
Ciulli 1961, Caprini, Fischer 2011. See 3.4 and 3.6 for motivation

Lemma 1: Let D1 and D2 be two domains in the complex u-plane, with
D2 ⊂ D1, D2 6= D1. Consider the two conformal mappings

z1 = z̃1(u) : D1 → K1 = {z1 : |z1| < 1}, z2 = z̃2(u) : D2 → K2 = {z2 : |z2| < 1}
Let Q be a point of D2, Q ∈ D2, such that z̃1(Q) = 0 and z̃2(Q) = 0. Then

|z̃1(u)| < |z̃2(u)|, for all u ∈ D2, u 6= Q. (13)

Lemma 2: Let B(u) be a function holomorphic in D1 and the expansions

B(u) =
∞

X

n=0

bn,1(z̃1(u))n, B(u) =
∞

X

n=0

bn,2(z̃2(u))n, (14)

be convergent for z1 ≡ z̃1(u) ∈ K1 and z2 ≡ z̃2(u) ∈ K2 respectively. Assume
also that

lim
n→∞

n
p

|bn,1| = lim
n→∞

n
p

|bn,2| = 1. (15)

Then a positive integer N = N(u) exists such that the following inequality

Rn(u) =

˛

˛

˛

˛

bn,1(z̃1(u))n

bn,2(z̃2(u))n

˛

˛

˛

˛

< 1, (16)

holds for any n integer, n > N, and u ∈ D2, u 6= Q.
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5.3 Proof of Lemma 1

• Define F (z2) = z̃1(z̃
[−1]
2 (z2)) for z2 ∈ K2, where z̃

[−1]
2 is the inverse to z̃2

• F (z2) is holomorphic on the unit disk K2 of the z2-plane and maps
this disk into the unit disk K1 of the z1-plane, i.e. |F (z2)| ≤ 1

• Since z̃1(Q) = 0 and z̃2(Q) = 0, it follows that F (0) = 0

• Schwarz’s lemma1 gives |F (z2)| ≤ |z2| for z2 ∈ K2

• The definition of F (z2) and the obvious relation z̃
[−1]
2 (z2) = u for u ∈ D2

leads to |z̃1(u)| ≤ |z̃2(u)|, u ∈ D2

• Ignoring mappings that reduce to mere rotations, we obtain (13), which
proves Lemma 1.

1Schwarz’s lemma: If a function F (z) is holomorphic on the disk |z | < 1 and
satisfies the conditions F (0) = 0 and |F (z)| < 1 for |z | < 1, then |F (z)| ≤ |z |
everywhere in |z | < 1. If the equality sign occurs at least at one interior point, then it
takes place everywhere and F (z) has the form F (z) = z exp(iα) with α real.
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5.4 Proof of Lemma 2

• The relations (15) imply that the coefficients |bn,j | can, for large enough
n, be represented in the form

|bn,j | = e
gj (n), j = 1, 2, (17)

where gj (n) are real-valued functions, with limn→∞ gj (n)/n = 0, j = 1, 2.

• The ratio defined in (16) can be written as

Rn(u) = e
g(n) × (ρ(u))n, (18)

where
g(n) = g1(n) − g2(n), ρ(u) = |z̃1(u)/z̃2(u)|. (19)

• Taking the logarithm of (18), one obtains

lnRn(u) = n

»

g(n)

n
+ ln ρ(u)

–

, (20)

• From (19) it follows that limn→∞ g(n)/n = 0, while ρ(u) < 1 for all
u ∈ D2, u 6= Q, according to Lemma 1.

• This implies that, at large n, lnRn(u) < 0, proving Lemma 2.
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6.1 Singularity Softening
see also 6.2

• The series B(u) =
∑

cn (w(u))n accounts for the LOCATION of the
singularities of B(u); w(u) is optimal for w = w̃ , where Gw̃ = H:

w̃(u) = (
√

1 + u −
√

1 − u/2)/(
√

1 + u +
√

1 − u/2)
• Something is known also about the NATURE of the singularities of

B(u) (5.6,9.1). Softening: the two known singularities in

B(u) =
1

(u + 1)γ1(2 − u)γ2

N∑

n=0

cnw̃
n (21)

can be suppressed by suitable factors; the two singularities become
weaker or disappear. This procedure is not exact, unlike OCM. Its
aim is to make the singularities softer, less influential; it can be ex-
tended for the next known singularities in the u-plane in powers of

w̃jk (u) =

√
1 + u/j −

√
1 − u/k√

1 + u/j +
√

1 − u/k
, j ≥ 1, k ≥ 2

• w̃jk maps the u-plane cut for u < −j and u > k onto |wjk | < 1
Irinel Caprini (Bucharest) and Jan Fischer (Prague), 34/84



X

6.2 Various conformal mappings
see also 6.1

-1 0 1

Re w
12

Im
 w

12

-1.5 -1 -0.5 0 0.5 1 1.5

Re w
13

Im
 w

13

w̃12(u) (IC&JF1999) w̃13(u) (Cvetic, Lee 2001)

-1.5 -1 -0.5 0 0.5 1 1.5

Re w
1inf

Im
 w

1i
nf

-1.5 -1 -0.5 0 0.5 1 1.5

Re w
23

Im
 w

23

w̃1∞(u) (Mueller 1992) w̃23(u)
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6.3 A remark on Proof of Lemma 1

Remark:. Let
PN

n=0 anz
n be the sum of a (truncated) series in zn and let

ρ = |z0| be its radius of convergence. Then, for any |z | < ρ (i.e., inside the
convergence circle), there is a number q satisfying the inequalities 0 ≤ q ≤ 1
such that |z | ≤ qρ (note that q depends on |z |).
Inside the convergence circle, the general term anz

n tends to zero with
increasing order n. A number A > 0 exists such that |anz

n
0 | = |an|ρn < A for

any n. The absolute values |anz
n| of all terms are less than the corresponding

terms of a decreasing geometrical series of positive numbers. Thus, for any n

positive integer, the inequality

|anz
n| = |anz

n
0 ||z/z0|n ≤ Aq

n,

holds, where q = |z/z0| = |z |/ρ is the quotient of the geometrical progression,
0 ≤ q ≤ 1 .
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7.1 Non-power perturbative expansion functions 1
Notation

• FO version: bD(s) =
P

n

c̃
(jk)
n (s) W̃ jk

n (µ2)

W̃ jk
n (µ2) =

1

β0
PV

∞
Z

0

e
−u/(β0as (µ

2)) (w̃jk(u))n

Sjk(u)
du

• CI version: bD(s) =
P

n

c
(jk)
n W jk

n (s)

W jk
n (s) =

1

β0
PV

∞
Z

0

e
−u/(β0as (s)) (w̃jk (u))n

Sjk(u)
du

• Sjk(u) =
“

1 − w̃jk (u)

w̃jk (−1)

”γ′

1
“

1 − w̃jk (u)

w̃jk (2)

”γ′

2

• γ′
1 = {2γ1 for j = 1; γ1 for j 6= 1}

• γ′
2 = {2γ2 for k = 2; γ2 for k 6= 2} see 7.1, 8.1
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7.2 Non-power perturbation expansion functions 2
1 Discussion

• The expansion functions W jk
n are singular at αs = 0. Their

expansions in the αn
s are divergent

• For αs → 0+, the W jk
n (αs) ∼ αn

s .

• The optimal expansion D̂(s) =
∑

n c12
n W12

n (s) is, under certain
conditions, convergent in a domain of the complex s-plane (method
of steepest descent, IC& JF 2001)

• This however does not imply that this is the correct sum of the
series. Convergence is a necessary, not a sufficient condition for
finding the correct solution. See also FOPT and CIPT 2.5 - 2.8.

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 39/84



X

7.3 Non-power expansions in Beneke-Jamin models
Beneke, Jamin 2008, Jamin 2011, IC, JF 2009, 2011

1 To test our method and compare it with the standard approach, we need
models with a large enough number of terms. We take the models by Beneke
and Jamin:

• bD(as) = 1
β0

PV
∞
R

0

e
−u/(β0as (s)) B(u) du

• B(u) = BUV

1 (u) + BIR

2 (u) + BIR

3 (u) + · · · dPO

0 + dPO

1 u + · · ·

BIR
p (u) =

dIR

p

(p−u)1+γ̃

h

1 + b̃1(p − u) + b̃2(p − u)2 + . . .
i

BUV
p (u) =

dUV

p

(p+u)1+γ̄

h

1 + b̄1(p + u) + b̄2(p + u)2
i

• The free parameters (dUV

1 , d IR

2 , d IR

2 , dPO

0 , dPO

1 , .....) are fixed by
reproducing the known values of cn,1

• dUV
1 = 1.56 × 10−2, d IR

2 = 3.13, . . . Beneke & Jamin, 2008

• Other possibilities were also examined numerically

• models with larger dUV

1 and smaller d IR

2 Jamin, IC&JF 2011
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7.4 The standard and the non-power expansions
in the Beneke-Jamin [BJ] model

• In the BJ model, two lowest singularities of B(u) are assumed, the others
being parametrized by polynomials. To confront the two approaches, we
use the same model to test our approach (with the W jk

n ). A big difference
of the two approaches is obtained: We obtain a very good approximation
of δ(0), much faster in the CIPT summation than in the FOPT one.

• In the standard approach, FOPT is preferred to CIPT, but the accuracy is
worse. Violent oscillations set on above the 10th-15th order.

• A clean-cut difference between our result and that of [BJ] is obtained (7.5
-7.10): In our (non-power) expansion the exact value of δ(0) is reached
much faster in CIPT than in FOPT. In the standard approach the exact
value is reached by FOPT faster than by CIPT; see Refs. [1,4].
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7.5 Confronting non-power expansions with standard ones
1 Real part of bD(s) of the model of Beneke and Jamin, N = 5

0 0.5 1 1.5 2 2.5 3
φ (radians)

0.05

0.1

0.15

Re D(φ)

CI standard

CI w
12

CI w
13

CI w
1∞

CI w
23

0 0.5 1 1.5 2 2.5 3
φ (radians)

0

0.05

0.1

0.15

Re D(φ)

FO standard

FO w
12

FO w
13

FO w
1∞

FO w
23

1 The real part of the Adler function of the model of Beneke & Jamin,
calculated along the circle s = M2

τ exp(iφ) for αs(M
2
τ ) = 0.3156, using the

perturbative expansions with N = 5 terms.

Left panel: CI expansions. Right panel: FO expansions.
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7.6 Confronting non-power expansions with standard ones
2 Real part of bD(s) of the model of Beneke and Jamin, N = 18

0 0.5 1 1.5 2 2.5 3
φ (radians)

0.05

0.1

0.15

Re D(φ)

CI w
12

CI w
13

CI w
1∞

CI w
23

0 0.5 1 1.5 2 2.5 3
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-0.2

-0.1

0

0.1

0.2

Re D(φ)

FO w
12

FO w
13

FO w
1∞

FO w
23

2 As in the previous figure for N = 18. The standard CI and FO expansions

exhibit big oscillations and are not shown.

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 43/84



X

7.7 Confronting non-power expansions with standard ones
3 Integral δ(0) in the Beneke-Jamin model calculated with standard expansion (left) and with a
non-power one (right)

2 4 6 8 10 12 14 16 18
Perturbative oder N

0.12

0.16

0.2

0.24

0.28

0.32

0.36

δ(0
)

CIPT

FOPT

2 4 6 8 10 12 14 16 18
Perturbative oder N

0.12

0.16

0.2

0.24

0.28

0.32

0.36

δ(0
)

CIPT  new 

FOPT new 

3 Integral δ(0) calculated for αs(M
2
τ ) = 0.34 with the standard (left, see Beneke

and Jamin, IHEP, 2008) and the non-power (right, see Caprini and Fischer,
EPJ C, 2009, [4]) CI and FO expansions.
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7.8 Confronting non-power expansions with standard ones
4 Discussion of Fig. 8.7

EXPANSION PREFERS TO Remark
: the summation
Standard, in αn

s FOPT CIPT striking
: difference
Non-power, in W j,k

n (αs) CIPT FOPT

• While the standard pt expansion in powers of αs prefers FOPT to CIPT,
expansions in functions of the Wn type clearly prefer CIPT. This implies
that the singularities of bD in αs do play an important role and should not
be ignored, as usually happens when the standard series in the αn

s are
used. It is surprising how much the convergence properties are improved
when renormalon sigularities are taken into account.

• An important fact is that the non-power approach eliminates oscillations,
which grow dramatically with growing order of the αn

s expansion.
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7.9 Confronting non-power expansions with standard ones
5

N CI st. FO st. CI w12 FO w12 CI w13 FO w13 CI w1∞ FO w1∞ CI w23 FO w23
2 0.1776 0.1692 0.1977 0.2228 0.2070 0.2203 0.1883 0.2524 0.2123 0.2099

3 0.1898 0.2026 0.2009 0.2460 0.2030 0.2440 0.1975 0.2530 0.2028 0.2437

4 0.1983 0.2200 0.2263 0.2463 0.2194 0.2460 0.2288 0.2465 0.2206 0.2463

5 0.2022 0.2288 0.2290 0.2440 0.2268 0.2423 0.2310 0.2427 0.2292 0.2423

6 0.2046 0.2328 0.2324 0.2484 0.2306 0.2421 0.2321 0.2431 0.2319 0.2449

7 0.2046 0.2342 0.2339 0.2536 0.2331 0.2457 0.2333 0.2454 0.2345 0.2502

8 0.2017 0.2353 0.2339 0.2505 0.2343 0.2484 0.2341 0.2471 0.2347 0.2476

9 0.2004 0.2367 0.2341 0.2431 0.2348 0.2457 0.2346 0.2465 0.2347 0.2377

10 0.1842 0.2390 0.2351 0.2420 0.2348 0.2394 0.2348 0.2436 0.2353 0.2337

11 0.1962 0.2402 0.2359 0.2406 0.2348 0.2352 0.2349 0.2399 0.2348 0.2335

12 0.1123 0.2436 0.2362 0.2298 0.2351 0.2349 0.2349 0.2370 0.2374 0.2262

13 0.2629 0.2408 0.2362 0.2229 0.2355 0.2341 0.2349 0.2356 0.2348 0.2226

14 -0.2915 0.2575 0.2364 0.2242 0.2361 0.2303 0.2349 0.2354 0.2395 0.2314

15 1.1011 0.2170 0.2367 0.2173 0.2366 0.2277 0.2350 0.2357 0.2356 0.2365

16 -3.362 0.3818 0.2368 0.2102 0.2369 0.2305 0.2351 0.2360 0.2343 0.2374

17 9.5931 -0.1881 0.2368 0.2176 0.2372 0.2356 0.2352 0.2360 0.2533 0.2512

18 -31.52 2.144 0.2368 0.2201 0.2373 0.2371 0.2354 0.2359 0.1926 0.2665

5 The quantity δ(0) for the model proposed by Beneke & Jamin 2008 calculated
for αs(M

2
τ ) = 0.34 with the standard and modified CI and FO expansions

truncated at the order N. Exact value δ(0) = 0.2371

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 46/84



X

7.10 Confronting non-power expansions with standard ones
6

N CI st. FO st. CI w12 FO w12 CI w13 FO w13 CI w1∞ FO w1∞ CI w23 FO w23
2 0.1776 0.1692 0.1977 0.2228 0.2070 0.2203 0.1883 0.2524 0.2123 0.2099

3 0.1898 0.2026 0.2009 0.2460 0.2030 0.2440 0.1975 0.2530 0.2028 0.2437

4 0.1983 0.2200 0.2263 0.2463 0.2194 0.2460 0.2288 0.2465 0.2206 0.2463

5 0.2022 0.2288 0.2290 0.2440 0.2268 0.2423 0.2310 0.2427 0.2292 0.2423

6 0.2041 0.2318 0.2263 0.2493 0.2271 0.2420 0.2284 0.2431 0.2260 0.2454

7 0.2041 0.2290 0.2201 0.2628 0.2220 0.2481 0.2230 0.2472 0.2174 0.2580

8 0.2023 0.2213 0.2202 0.2756 0.2164 0.2595 0.2182 0.2541 0.2136 0.2734

9 0.2037 0.2110 0.2175 0.2742 0.2143 0.2686 0.2154 0.2608 0.2138 0.2706

10 0.1924 0.2032 0.2055 0.2709 0.2144 0.2651 0.2146 0.2629 0.2115 0.2517

11 0.2124 0.2004 0.1982 0.2905 0.2136 0.2504 0.2146 0.2578 0.2068 0.2531

12 0.1412 0.2071 0.2007 0.3063 0.2111 0.2406 0.2148 0.2468 0.2081 0.2627

13 0.3121 0.2117 0.2022 0.2820 0.2086 0.2449 0.2149 0.2340 0.2060 0.2133

14 -0.2105 0.2344 0.2001 0.2666 0.2074 0.2459 0.2146 0.2239 0.2124 0.1338

15 1.2336 0.1934 0.2009 0.2865 0.2079 0.2176 0.2142 0.2187 0.2087 0.1192

16 -3.147 0.3500 0.2044 0.2562 0.2091 0.1676 0.2136 0.2175 0.2073 0.0930

17 9.948 -0.2333 0.2059 0.1822 0.2102 0.1355 0.2130 0.2175 0.2275 -0.0415

18 -30.94 2.084 0.2058 0.1722 0.2107 0.1345 0.2124 0.2159 0.1617 -0.1019

6 The quantity δ(0) for an alternative model with a smaller residue of the first
IR renormalon, calculated for αs(M

2
τ ) = 0.34 with the standard and modified

CI and FO expansions truncated at the order N. Exact value δ(0) = 0.2102
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8.1 Non-power perturbative expansions
Conclusions from the numerical tests

• Non-power pt expansions provide :

• Good approximation of the OCM for various models and values of as

• Good results up to rather high orders also with other expansion functions
after softening the first singularities

• The non-power CI expansions give better results than the non-power FO
expansions

Optimal choice: non-power, NPPT expansions, which implement
the high-order behaviour through the running coupling
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8.2 αs from hadronic τ decays

• Input

• δ(0) = 0.2037 ± 0.0040exp ± 0.0037PC Beneke 2011

• c1,1, c2,1, c3,1, c4,1 c5,1 = 283 ± 283 Beneke 2011

• β0, β1, β2, β3, β4 = ±β2
3/β2 (for error assessment) Pich 2011

• Results:

w12 : 0.3195± 0.0034exp ± 0.0031PC
+0.0246
−0.0137(c5,1)

+0.0018
−0.0019(scale)

w13 : 0.3208± 0.0035exp ± 0.0032PC
+0.0131
−0.0093(c5,1)

+0.0024
−0.0088(scale)

w1∞ : 0.3182± 0.0033exp ± 0.0031PC
+0.0172
−0.0111(c5,1)

+0.0025
−0.0088(scale)

w23 : 0.3193± 0.0034exp ± 0.0031PC
+0.0182
−0.0115(c5,1)

+0.0023
−0.0063(scale)
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8.3 αs from hadronic τ decays

• Average of the new determinations:

αs(M
2
τ ) = 0.3195±0.0034exp±0.0031PC

+0.0182
−0.0114(c5,1)

+0.0018
−0.0019(scale)±0.0005β4

• The biggest error is due to the uncertainty of c5,1

• Combining errors in quadrature:

αs(M
2
τ ) = 0.3195 +0.0189

−0.0138

• Comparison: with the same input

• Standard CIPT: αs(M
2
τ ) = 0.3419 ± 0.012

• Standard FOPT: αs(M
2
τ ) = 0.3199+0.0118

−0.0074

• Smaller errors, but the truncation error underestimated
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Outline

1 Introduction. Perturbative QCD ... 1.1 - 1.2

2 ADLER FUNCTION D̂(αs). Expand D̂(αs) in powers of αs ... 2.1 - 2.6

3 Forget about D̂! Watson‘s lemma. Expand B(u) in powers of u ... 3.1 - 3.4

4 FORGET ABOUT POWERS! New expansions are needed ... 4.1 - 4.7

5 OCM: H becomes the disk of convergence...5.1 - 5.5

6 Singularity softening ... 6.1 - 6.3

7 NON-POWER perturbation series. Test on Beneke-Jamin models...7.1 - 7.10

8 Determination of αs(M
2
τ ) ... 8.1 - 8.4
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9.1 CONCLUSIONS
RECAPITULATION: Short history of our method. See also 4.1 - 4.9 and 5.2

• The standard pt expansions in powers of αs ignore, in every order,
the singularities of the expanded function D̂(αs). This is paradoxical
in view of the fact that the knowledge of the singularities is of
importance for the convergence properties of pt expansions and for
the determination of D̂(αs)

• We developed a systematic method of constructing an improved
expansion that, besides the four lowest-order expansion coeffs,
makes full use of our knowledge of
• (1)analyticity
• (2) location and nature of the singularities, and
• (3) high-order behaviour of the expansion coeffs of the expanded

function, which in our case is B(u), the Borel transform of D̂(αs).
See refs [1-4, 6-8] for details.
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9.2 CONCLUSIONS
Every construction calls for specific building constituents which are adjusted to the construction

• Standard Perturbation Theory rests on the following postulates (5.1-5.4):

• 1 Perturbative series is an EXPANSION in POWERS of a parameter

• 2 PERTURBATIVE EXPANSION is CONVERGENT

• 3 The EXPANDED FUNCTION is ANALYTIC in the perturbat.parameter.

• Thanks to Dyson, 3 (analyticity) is lost; singularities exist even at the
origin. If one restricts oneself to power series, this implies divergence of
the series, ie., 2 (convergence) is lost . As a consequence, Dyson‘s result
implies

• DYSON: Having lost 3 and wishing to retain 1, he LOSES 2

• WE: Having lost 3 and wishing to retain 2, we ABANDON 1

• DYSON: Having lost CONVERGENCE 2, he resorts to asymptotic series.
(But asymptotic series lead to fatal AMBIGUITY.)

• WE abandon POWER SERIES 1, extending perturbation theory by using
the Wn(αs) functions adjusted to the expanded function. (Even within
the frame of the different power expansions there exist an infinite amount
of perturbative summations.)
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9.3 CONCLUSIONS
Perturbation Theory, RECAPITULATION: STANDARD expansions in the powers αn

s , un

• Expanding the Adler function D̂(αs) and its Borel transform B(u):

• 1 IN POWERS of αs(s) and u, respectively (Standard POWER

expansions of D̂(αs) and B(u)):

♣D̂(αs) ∼
∞∑

k=0

αk+1
s Γ(k + 1)

B(k)(0)

k!
(22)

♣B(u) =
∑∞

0 uk B(k)(0)
k!

• 2 NOW take NON-POWER expansions of D̂(αs) (see 2.7, 2.8):
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9.4 CONCLUSIONS. Recall 5.1
PT, RECAPITULATION: 4 NON-POWER expansions in the singular functions W jk

n (s) , (w̃(u))n

♠D̂(s) ∼
∑
n

c
(jk)
n W jk

n (s)

W jk
n (s) =

1

β0
PV

∞∫

0

e
−u/(β0as(s))

(w̃jk(u))n

Sjk(u)
du

• Map the cut u-plane onto the disk |w | < 1
in the w = w̃(u) plane, with w̃(0) = 0

• Non-power expansion of B(u):
♠B(u) =

∑∞
0 cn wn, w = w̃(u)

w̃(u) =
√

1+u−
√

1−u/2
√

1+u+
√

1−u/2

• converges in the whole cut u-plane
• best asymptotic convergence rate at all interior points
• full use of our knowledge of the location of the singularities of B(u)

• suggests the expansion: D̂(s) =
∑
n

cn
1
β0

PV
∞∫

0

e−u/(β0as(s))(w̃(u))ndu
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9.5 CONCLUSION
Summary

• Our present work is motivated by the observed discrepancy between the
predictions of αs(M

2
τ ) from the FOPT and CIPT power expansions.

• The results of the new RGSPT expansion are similar to those obtained by
the CIPT expansion.

• The dramatic divergence of the perturbative series is tamed by two
methods we have applied in the Borel plane: optimal conformal mapping
(OCM) and singularity softening (SS).

• It turns out that the renormalon singularities and RG invariance play an
important role in perturbation theory.
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A P P E N D I C E S

Additional remarks and explanations not presented
in the Oct. 17, 2013 seminar
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2.4 Singular expansion functions
We summarize. Replacing the powers αn

s by the Wn(αs ) functions

• 1: Asymptotic series (Dyson ‘52) imply: 1high ambiguity, 2plenty of
information gets lost. The approximants in powers, αn

s , tell nothing

of the singularities of D̂(αs). We replace the powers by the Wn(αs)

functions, whose singularities truly resemble those of D̂(αs).
• 2: Using the Wn(αs): mild behaviour at n → ∞.
• 3: The τ decay rate into u and d quarks (through a V or an Avector

current). The pt QCD contribution is known to O(α4
s ).

• 4: The npt corrections are supposed to be small.
• 5: Main uncertainties: from the h.o.corrections & RG-improvement.
• 6: (3) and (4) are relevant for the extraction of αs(M

2
τ ). Related to

an observable, D̂pert(αs) and δ(0) should be scale independent:

µ2 d
dµ2 D̂pert(αs) = 0, D̂pert(αs) =

∞∑
n

Kn[as(µ
2)]n

(see 1.2). The OPE contributions are small, pt QCD can be used

outside the timelike axis to calculate D̂ along the contour.
• 7: But scale dependence is still present in TRUNCATED expansions.
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2.7 Renormalization Group summation
RGSPT

• RGSPT (Renormalization Group Summation Perturbation Theory):

As suggested by Ahmady & al., the expansion of D̂FOPT (a, L) is

D̂FOPT (a, L) =

∞∑

n=1

anDn(aL), (23)

2.6, where the Dn(v), depending only on v = aL, are

Dn(v) =

∞∑

m=0

(m + 1)cn+m,m+1v
m (24)

• These functions can be obtained in a closed analytical form (Ahmady
& al). The Adler function defined by (23) is scale independent:

d

dµ2
D̂FOPT (aL) = 0 , β(a)

∂D̂FOPT

∂a
− ∂D̂FOPT

∂L
= 0. (25)
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2.7 Renormalization Group summation
RGSPT

• The first two solutions are

D1(aL) =
c1,1

y
, D2(aL) =

c2,1

y2
− β1c1,1 ln y

β0w 2
, y = 1+β0aL . (26)

• The RGSPT expansion of the Adler function is

D̂RGSPT (aL) =
N∑

n=1

an Dn(aL) (27)

defined as infinite series in powers of the variable v = aL.

δ
(0)
RGSTP =

∞∑

n=1

a(M2
τ )n dn (28)

dn =
1

2πi

∮

|s|=M2
τ

ds

s

(
1 − s

M2
τ

)3 (
1 +

s

M2
τ

)
Dn(aL). (29)
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4.2 Renormalization-group summation: FOPT, CIPT

The standard pt expansion of bD in a definite Rscheme, denoted FOPT [BJ], is

bDFOPT (αs) =
X

n≥1

(as(µ
2))n [cn,1 +

n
X

k=2

k cn,k (ln
−s

µ2
)k−1] (30)

see 1.2. The Rscale µ2 is chosen close to s0, the cn,1 are calculated from
Feynman diagrams. The cn,k for 2 ≤ k ≤ n depend on the cn,1 and on the βk

of the RG β-function, presently known to 4 loops.
In the M̄S scheme for nf = 3, the coeffs cn,1, n = 1, 2, 3, 4 calculated up to
now are 1, 1.64, 6.371, and 49.079 resp. By setting µ2 = −s in (30), one
obtains the RG improved or contour improved perturbation theory (CIPT):

bDCIPT (αs) =
X

n≥1

cn,1(as(−s))n (31)

where the running coupling as(−s) is determined by solving the RG equation

s das(−s)/ds = β(as). (32)

.
This equation is solved along the inrtegration contour |s| = s0, from the input
as(−s) at s = −M2

τ .
Irinel Caprini (Bucharest) and Jan Fischer (Prague), 63/84



X

4.3 Renormalization-group summation: RGSPT

This equation is solved numerically, iteratively along the integration contour
|s| = s0, starting from the input as(−s) at s = −M2

τ . The above expansions
(convergence, behaviour in the s-plane) have been critically examined
Davier08,BJ08,Pich11,BJ/ed.Bethke11,BeBoiJa13. New prescription
Ahmady02,03. Generalization of leading logs to nonleading ones, by summing
all terms obtained from RG invariance. AACF13. (30) can be written as

bDRGSPT (αs) =
X

n≥1

(ãs(−s))n [cn,1 +

n−1
X

j=1

cj,1 dn,j(y)], (33)

where

ln ãs(−s) = ãs(µ
2)/[1 + β0as(µ

2) ln(−s/µ2)] (34)

is the solution of the RGE 32 to one loop.
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4.4 Other high-order effects

• Abbas,Ananthanarayan,Caprini: In [AbAnCa], the perturbative expansion
is improved by using the leading logarithms obtained from

RENORMALIZATION GROUP INVARIANCE (RGS),
see [MMA,Ahmady].

remarkably small.

• Confrontation of the CIPT summation with the FOPT one improved by
RGS (see 2.8). The difference between the CIPT and the RGS- improved
FOPT sums is REMARKABLY SMALL. Thus, the CIPT summation in
the NPPT expansion has, with great accuracy, a very similar effect as the
FOPT improved by RGS. This signals the need of extra information inputs,
additional to the values of the lowest-order four expansion coeffs. The RG
effects of the CIPT and RGS approaches overlap here, they percolate.

AACF : Combining RGS with NPPT (ie., large order behavior by means of OCM
and SS). There are two sources of ambiguity, RG and NPPT expansion.
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Outline

1 Introduction. Perturbative QCD ... 1.1 - 1.2

2 ADLER FUNCTION D̂(αs). Expand D̂(αs) in powers of αs ... 2.1 - 2.6

3 Forget about D̂! Watson‘s lemma. Expand B(u) in powers of u ... 3.1 - 3.4

4 FORGET ABOUT POWERS! New expansions are needed ... 4.1 - 4.7

5 OCM: H becomes the disk of convergence...5.1 - 5.5

6 Singularity softening ... 6.1 - 6.3

7 NON-POWER perturbation series. Test on Beneke-Jamin models...7.1 - 7.10

8 Determination of αs(M
2
τ ) ... 8.1 - 8.4
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4.5 A NEW EXPANSION of D̂(αs) is needed
1 Symmetria symmetriam invocat

• The singularities of bD(αs), if encoded in renormalons at FINITE
distance from u = 0, are located AT αs = 0.

• A serious defect of Standard PT: The singular bD(αs) is expanded in the
αn

s , which, analytic in αs , DO NOT SEE the physics hidden in the singul-
arities of bD. So, some ESSENTIAL PHYSICS may be INVISIBLE to stan-
dard PT. (L‘essentiel est invisible pour la theorie des perturbations.) Each

approximant is analytic, in contrast to bD(αs).

• THE FORM of our expansion functions depends on which property of bD ,
a physical quantity, is considered important: symmetry, analyticity,
singularities, etc. In keeping with it, the task is to construct expansion
functions having the same property. Thus,

♣ Every construction calls for specific building constituents,
♣ Every function calls for specific expansion functions

See also 9.1 - 9.5.
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4.6 A NEW EXPANSION of D̂(αs) is needed
2 Singularitas singularitatem invocat

• Apply this to the SINGULAR bD(αs). Expand bD(αs) in a set of functions

whose singularities resemble those of bD(αs) as much as possible:

• Expansion of a SINGULAR function bD(αs) calls for
SINGULAR expansion functions, Wn(αs) (*).

• NOTE: The Standard PT does NOT observe the demand (*).

Indeed, bD(αs) is SINGULAR,
while the expansion functions are αn

s , i.e., ANALYTIC .

• This is why the powers αn
s are not suited for expanding the singular

bD(αs). We build up
Non-Power Perturbation Theory (NPPT),

in which the rule (*) is observed (see 8.1, 10.4).
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4.7 APPLY (*) to B(u), rather than to D̂(αs)
3 Preparation

• INSTEAD of expanding ♠ ADLER FUNCTION bD(αs) in αn
s ,

we can expand its ♠ BOREL TRANSFORM B(u) in un

• WHY do we do so? WHAT IS BETTER, and why? The expansion of bD

and B behaves like n!αn+1
s and un respectively. In more detail:

• REMIND Watson‘s lemma. You have (page 3.2) two series:

B(u) =
P∞

0 ukB(k)(0)/k!

bD(αs) ∼
∞

X

k=0

αk+1
s Γ(k + 1)

B(k)(0)

k!
.

Note the factor Γ(k + 1). We use the formula

1/ρB = lim sup
n→∞

n
p

|an|,

for 1/ρB , and 1/ρD = lim supn→∞
n

p

n!|an| for 1/ρD , where
ρB and ρD is the convergence radius of the two series respectively. If ρB is
finite nonvanishing (= 1 for the UV renormalon), ρD is zero, and the

expansion of bD(αs) diverges for every αs 6= 0.
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4.8 APPLY (*) to B(u), rather than to D̂(αs)
4 Expansion of a SINGULAR function B(u) calls for SINGULAR expansion functions, (w̃(u))n

• Unlike in the αs -plane, the boundary of H in the u-plane NEVER
TOUCHES the orign. The expansion of B(u) in un has much a milder

h.o. behaviour than that of bD(αs) in αss
n (factor n!). There are two

steps of improvement:

• STEP 1: Do NOT EXPAND bD(αs) in αn
s ,

but rather EXPAND B(u) in un. HOWEVER,

• STEP 2 is an improvement of Step 1: EXPAND B(u) NOT in un, but in

the (w̃(u))n (OCM, optimal conformal mapping), w̃(u) having the
same location of singularities as B(u).

• CONCLUSION: Rather than in un, expand B(u) in the (w̃(u))n, since
w̃(u) maps H onto the DISK |w̃(u)| ≤ 1. INTUITIVELY : As w̃(u) and
B(u) have identical location of singularities, the expansion of B in the w̃n

is simpler and easier to handle than that in the un. EXACTLY sec. 6. To
make full use of analyticity,

USE OCM in the Borel plane.
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4.9 OCM makes H COINCIDE with the convergence disk
see 4.11, 6.5 and the sections 5 and 6

• ♣ Let H be the analyticity domain of B(u) in the u-plane,
♣ Let Gw be a subset (region) of H: Gw ⊂ H,
♣ Let w(u) map Gw conformally onto |w(u)| < 1
♣ Let w̃(u) map Gw̃ = H conformally onto |w̃(u)| < 1

• In QCD, the singularities of B(u) are located along the rays u > 2 and
u < −1 (IR and UV renormalons). H is the u-plane cut along the rays;
see 4.10 and 6.5 for details

• IF the power series of a function analytic in u is DIVERGENT at some
u ∈ H, convergence is restored by OCM at that point.

• IF the power series is CONVERGENT at some u ∈ H, the convergence
rate is enhanced by OCM at that point.

• This is impossible in the αs -plane, where the point αs = 0 MAY APPEAR

ON THE BOUNDARY of the analyticity domain. See 4.8. This is why
B(u) should be preferred to bD(αs), and

Expansions of B(u) in (w̃(u))n should be preferred to those in un.
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4.10 Discussion
See also 2.10, 4.5, 4.6, 6.5 and sec. 5 for details

• Take Gw ⊂ H. If Gw = H, we write w̃(u), Gw̃ . The equality Gw̃ = H
implies that the whole doubly-cut u-plane (which is simply-connected) is
mapped onto the |w̃(u)| < 1 disk, w̃(u) having the same LOCATION of
singularities as B(u). The disk |w̃(u)| < 1 is the

DISK OF CONVERGENCE of the expansion of B(u) in the (w̃(u))n,
and IS IDENTICAL

with H, the REGION OF ANALYTICITY of B(u) = B(u(w̃)).

• See Lemma 1 and Lemma 2, sec. 6
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5.2 More about conformal mapping method
See also 11.7

• Soon after Ciulli,JF,Nucl.Phys.1961, similar methods of improving
conver-gence properties of infinite series appeared . However, only our
paper contains proofs of the properties of OCM. Our result remained
unnoticed for decades; we therefore devote a discussion of it in ref. [1]
and here in sec. 6.

• The function w(u) conformally maps the region Gw ⊂ Gw̃ = H in the
u-plane onto the disk |w(u)| < 1. Using w(u), we obtain a series with
better convergence properties than the expansion in un.

• What are the merits and virtues of OCM (w = w̃) in applications?
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9.2 Status of the αs determination
From all processes that involve gluons

0.11 0.12 0.13
α  (Μ  )s Z

Quarkonia (lattice)

DIS  F2 (N3LO) 

τ-decays (N3LO)

DIS  jets (NLO)

e+e– jets & shps (NNLO) 

electroweak fits (N3LO) 

e+e– jets & shapes (NNLO) 

Υ decays (NLO)

S. Bethke et al, Summary of αs measurements, arXiv:1110.0016 [hep-ph]:

World average 2011: αs(M
2
Z) = 0.1183± 0.0010
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10.2 CONCLUSIONS
An example: 2 Resemblance in symmetry

• EXAMPLE: Partial wave expansion of A(s, t), the elastic scattering
amplitude of two spinless particles:

A(s, t) =

∞∑

l=0

(2l + 1)al(s)Pl (cos θ). (35)

Here, s and t is the c.-m. energy and the momentum transfer
squared respectively, while al(s), θ, and Pl is the partial wave
amplitude, the scattering angle and the Legendre polynomial of l-th
degree, respectively. NOTE: one could use many other function sets
to expand the angular dependence of A(s, t), but (35) is preferred,
exhibiting rotational symmetry, (SO(3)).

Irinel Caprini (Bucharest) and Jan Fischer (Prague), 75/84



X

9.6 CONCLUSIONS; see also 5.1 - 5.7
Non-Power PT (NPPT), RECAPITULATION: 8 Replacing the powers αn

s by the Wn(αs )

• The standard pt expansion functions (powers of αs) are replaced by
the Wn(αs), which are singular at αs = 0 and have divergent
expansions in the αn

s , thereby resembling, as far as our knowledge

allows, the expanded Adler function D̂(αs) itself.

• If αs → 0+, the functions Wn(αs) tend to zero with the same rate:
Wn(αs) ∼ (αs)

n.

• In the CI version, the new expansion provides a solid theoretical
frame for a precise determination of αs(M

2
τ ) from τ decays.

• The OCM w̃(u) allows one to expand B(u) in powers of w̃(u), a
function that has the same location of singularities as B(u). This
expansion has the fastest convergence rate.

• Several choices of ”singularity softening” and conformal mappings
give consistent results up to high orders.
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9.7 CONCLUSIONS; see also 4.1 - 4.7
Non-Power PT (NPPT),RECAPITULATION: 8 Replacing the powers αn

s by the Wn(αs )

• At first sight, the difference between the standard and the
non-power perturbation theories consists in the difference between
the two methods of approximating the solution of the equation of
motion of the interaction in question. Note, however, that nothing is
known about the relation between the exact solution of the
equations of motion and its approximation by means of the standard
perturbation power expansion on one side and the non-power
perturbation expansion on the other side. While the former
approximation is based on the well-known idea that the interaction is
mediated by the exchange of one, two, three, four, etc gauge bosons
of the relevant interaction (thereby being based on a mechanical
model of the particle exchange between the interacting objects
according to the corresponding of the interaction order), the idea of
the latter approximation is based on the universal assumption that
the fundamental physical properties are encoded in the singularities
of the functions that describe the interaction.
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9.8 CONCLUSIONS; see also 4.1 - 4.7
Non-Power Perturbation Theory (NPPT): 8 Replacing the powers αn

s by the Wn(αs )

• Our results published during the past 10-15 years on this subject
indicate that the description based on the singularities is more
appropriate for the description of the interaction processes and
comes nearer the truth and reality of Nature. // gives a truer
picture of the reality of Nature// occurring in Nature. It is not an
empty matter-of-course that, for small enough values of the coupling
parameter, the two different mathematical approaches which are
based on two markedly different philosophies coincide both
numerically and philosophically.
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9.9 CONCLUSIONS
Perturbation Theory: 9 Merits and virtues of our approach

• The graphs on the pages 9.5-9.7 show how the standard expansion
(left) and the non-power one (right) describe the model of Beneke
and Jamin at high orders. The difference is apparent above N = 10,
i.e., out of reach of our present knowlege of the coeffs. But even in
this situation, one can estimate what is preferred when the standard
expansion and when the non-power one is used.

• The results show how useful it is to account for singularities of
D̂(αs), in spite of our scarce knowledge of them: both the CI and
the FO expansions tend considerably faster to the exact value in our
non-power expansions, in which the singularities of D̂ are accounted
for. Violent oscillations typical for the standard expansions do not
appear in the non-power ones, the singularities being deposited in
the Wn(αs) functions, while the powers αn

s of the standard
expansion fully ignore them. The non-power expansion prefers CIPT
to FOPT, which can be understood in view of the fact that RG
invariance is taken into account in CIPT; see [1,2,4].
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10.5 CONCLUSIONS
Perturbation Theory, RECAPITULATION: 5 Our approach: Resemblance in singularities

• NOVEL APPROACH to perturbation theory (PT)

• Standard PT: Adler function has two parts, one describing the free
system and the other one describing interaction. The latter part is an
infinite series of powers of the coupling. Till 1952, the convergence
of pt series had been universally adopted. In 1952 F. Dyson
published a proof that the pt series in QED are divergent. This
raised the problem of expansions having terms dramatically growing
with growing order. This reveals strong singularities in the coupling
complex plane, and calls for NON-POWER Perturbation Theory:

• Replacing the standard powers by special functions that have
the same (or similar to, according to our knowledge) singularities
(location, nature) as the expanded function.
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10.6 CONCLUSIONS
Perturbation Theory, RECAPITULATION: 6 Our approach

• Our expanding functions (denoted generically Wn(αs)) should
implement all information about the singularities of the expanded
function. Then, the terms are not powers of the coupling, the
corections being big at low orders, decreasing with growing order.

• The methods applied here to pt theory were developed in 1960 as a
part of the program of the analytic theory of scattering amplitudes,
where problems of the determination of the S matrix were examined.
S.Ciulli, J.Fischer, Nucl.Phys.24,465(1961)
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9.1 CONCLUSIONS
Perturbation Theory: 1 Numerical approximation

• Numerical agreement is not the only aspect of approximation. There
are other properties (symmetries, singularities) which, if contained
by the expanded function, are expected to be present in each term
as well. Each approximant is supposed to have analogous properties
as the expanded function; see 4.2-4.5, 5.3
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9.5 CONCLUSIONS
RECAPITULATION: Short history of our method. See also 4.1 - 4.7 and 5.2

• The standard pt expansions in powers of αs ignore, in every order,
the singularities of the expanded function D̂(αs). This is paradoxical
in view of the fact that the knowledge of the singularities is of
importance for the convergence properties of pt expansions and for
the determination of D̂(αs)

• We developed a systematic method of constructing an improved
expansion that, besides the four lowest-order expansion coeffs,
makes full use of our knowledge of
• (1)analyticity
• (2) location and nature of the singularities, and
• (3) high-order behaviour of the expansion coeffs of the expanded

function, which in our case is B(u), the Borel transform of D̂(αs).
See refs [1-4, 6-8] for details.
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9.10 CONCLUSIONS; see also 4.1 - 4.7
Every construction calls for specific building constituents which are adjusted to the construction

• Standard Perturbation Theory rests on the following postulates (5.1-5.7):

• 1 Perturbative series is an EXPANSION in POWERS of a parameter

• 2 PERTURBATIVE EXPANSION is CONVERGENT

• 3 The EXPANDED FUNCTION is ANALYTIC in the perturbat.parameter.

• Thanks to Dyson, 3 (analyticity) is lost; singularities exist even at the
origin. If one restricts oneself to power series, this implies divergence of
the series, ie., 2 (convergence) is lost . As a consequence, Dyson‘s result
implies

• DYSON: Having lost 3 and wishing to retain 1, he LOSES 2

• WE: Having lost 3 and wishing to retain 2, we ABANDON 1

• DYSON: Having lost CONVERGENCE 2, he resorts to asymptotic series.
(But asymptotic series lead to fatal AMBIGUITY.)

• WE abandon POWER SERIES 1, extending perturbation theory by using
the Wn(αs) functions adjusted to the expanded function. (Even within
the frame of the different power expansions there exist an infinite amount
of perturbative summations.)
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