

Sergey Levonian DESY, Hamburg

Deep-Inelastic Scattering

 $\lambda = h/p \sim rac{1}{E}$

≨ 0.01 m Crystal
0,000,000
10 ⁻⁹ m Molecule
1/10
10 ⁻¹⁰ m Atom
1/10,000
10 ⁻¹⁴ m nic nucleus
1/10
10 ⁻¹⁵ m

1/1,000

< 10⁻¹⁸ m Electron, Quark

 $\lambda = h/p \sim rac{1}{E}$

Rutherford (1911)

- elastic (Coulomb) scattering of 7 MeV lpha on Au
- planetary model of atom \Rightarrow QM

$$\frac{d\sigma}{d\,\cos\theta} = \frac{\pi}{2} z^2 Z^2 \alpha^2 \left(\frac{\hbar c}{KE}\right)^2 \frac{1}{\left(1 - \cos\theta\right)^2} \quad ; \quad \mathbf{N}(\theta) \sim \frac{1}{\sin^4(\theta/2)}$$

 $\lambda = h/p \sim rac{1}{E}$

Rutherford (1911)

- elastic (Coulomb) scattering of 7 MeV lpha on Au
- planetary model of atom \Rightarrow QM

Hofstadter (1953)

- (in)elastic eN scattering of 400 MeV electrons
- Nucleus structure; size of A,p

 $\lambda = h/p \sim rac{1}{E}$

Rutherford (1911)

- elastic (Coulomb) scattering of 7 MeV lpha on Au
- planetary model of atom \Rightarrow QM

Hofstadter (1953)

- (in)elastic eN scattering of 400 MeV electrons
- Nucleus structure; size of A,p

SLAC (1968)

- Fixed target DIS with 20 GeV electron beam
- internal structure of hadrons
- experimental evidence for quarks

Momentum transfer inferred from electronquark scattering 1.0 consistent with three quarks.

≶ 0.01 m Crystal 1/10,000,000 10⁻⁹ m Molecule 1/10 10⁻¹⁰ m Atom 1/10,000 10⁻¹⁴ m Atomic nucleus 1/10 10⁻¹⁵m Proton 1/1.000

> < 10⁻¹⁸ m Electron, Quark

 $\lambda = h/p \sim rac{1}{E}$

Rutherford (1911)

- elastic (Coulomb) scattering of 7 MeV α on Au
- planetary model of atom \Rightarrow QM

Hofstadter (1953)

- (in)elastic eN scattering of 400 MeV electrons
- Nucleus structure; size of A,p

SLAC (1968)

- Fixed target DIS with 20 GeV electron beam
- internal structure of hadrons
- experimental evidence for guarks

HERA (1992 - 2007)

- first (and so far the only) ep collider
- energy frontier: $\sqrt{s} = 319 \text{ GeV}$
- resolution power down to 10^{-18} m
- QCD in low x regime ($x > 10^{-5}$)

 $\lambda = h/p \sim rac{1}{E}$

Restoring Universe Evolution

In the beginning the was the Idea...

...then a lot of Hard Work...

1984-1991

...then a lot of Hard Work...

1984-1991

1986-1992

...then a lot of Hard Work...

0

1984-1991

1992-2007

1979

1986-1992

...and finally...

Lots of Textbook results

HERA: The World's Only ep Collider

• HERA as Super-microscope

- ▷ Proton structure at high resolution
- \triangleright Impact for LHC

• HERA as Super-microscope

- ▷ Proton structure at high resolution
- \triangleright Impact for LHC

• HERA as Energy frontier machine

- Electroweak unification at work
- ▷ Anything beyond the Standard Model?

• HERA as Super-microscope

- Proton structure at high resolution
- \triangleright Impact for LHC

• HERA as Energy frontier machine

- Electroweak unification at work
- ▷ Anything beyond the Standard Model?

• HERA as QCD laboratory

- ▷ Putting QCD in stringent tests with:
 - \circ Jets (parton evolution schemes, NLO QCD, α_s)
 - Heavy flavor sector (multiscale problem: Q^2, M_Q, E_t)
 - Diffraction (interplay of soft and hard physics)
- \triangleright HERA specifics: lox x physics

• HERA as Super-microscope

- ▷ Proton structure at high resolution
- \triangleright Impact for LHC

• HERA as Energy frontier machine

- Electroweak unification at work
- ▷ Anything beyond the Standard Model?

• HERA as QCD laboratory

- ▷ Putting QCD in stringent tests with:
 - \circ Jets (parton evolution schemes, NLO QCD, α_s)
 - Heavy flavor sector (multiscale problem: Q^2, M_Q, E_t)
 - Diffraction (interplay of soft and hard physics)
- \triangleright HERA specifics: lox x physics
- Search for Novel Phenomena
 Precision Measurements

LEP

TEVATRON

a

HERA

HERA as Energy Frontier Machine

Electro-Weak Unification

HERA at Energy Frontier

$$\sigma_{\rm pol}^{CC}(e^{\pm}p) = (1 \pm P_e) \cdot \sigma_{\rm unpol}^{CC}(e^{\pm}p)$$

Anything beyond the SM ?

So far all NC and CC HERA data were in good agreement with the SM. Try to look more carefully at the tails, using two strategies:

- 1. Specific BSM signals search (LQ, LFV, SUSY, ...) guided by theory
- 2. Model independent generic search (data vs SM) guided by data

Leptoquarks ?

Leptoquarks ?

2011: Final status

Model independent search for New Phenomena

- Identify isolated objects: e, μ, γ, j, ν
- Select events, having at least two objects with high $P_T > 20 \text{GeV}$
- Classify into exclusive channels containing from 2 to 5 objects
- Compare with SM predictions
 ⇒ good overall agreement
- Find interesting regions with greatest deviations from SM in kin. distributions $(M_{\rm all}, \Sigma P_T)$
 - \Rightarrow Combine H1 and ZEUS data

Model independent search for New Phenomena

- Identify isolated objects: e, μ, γ, j, ν
- Select events, having at least two objects with high $P_T > 20 \text{GeV}$
- Classify into exclusive channels containing from 2 to 5 objects
- Compare with SM predictions
 ⇒ good overall agreement
- Find interesting regions with greatest deviations from SM in kin. distributions $(M_{\rm all}, \Sigma P_T)$
 - \Rightarrow Combine H1 and ZEUS data

HERA at Energy Frontier:

Standard Model is still in excellent shape!

HERA as Super-microscope

DIS: Cross sections and Structure Functions

NC

$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^2} = \frac{2\pi\alpha^2}{x} \left[\frac{1}{Q^2}\right]^2 \left[Y_+\tilde{F}_2 \mp Y_-x\tilde{F}_3 - y^2\tilde{F}_L\right]$$
$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^2} = \frac{G_F^2}{4\pi x} \left[\frac{M_W^2}{M_W^2 + Q^2}\right]^2 \left[Y_+\tilde{W}_2^{\pm} \mp Y_-x\tilde{W}_3^{\pm} - y^2\tilde{W}_L^{\pm}\right]$$

$$Y_{\pm} = 1 \pm (1 - y)^2$$

(similarly for pure weak CC analogues: W_2^{\pm}, xW_3 and W_L^{\pm})

dotted lines show the spread in predictions prior to HERA startup (1992)

- Precision of (1-2)% in the bulk region
- Perfect desciption of the data by NLO QCD over many orders in x and Q^2
- using QCD factorisation: $\sigma_{DIS} \sim \sum_a C_a \otimes f_{a/p}$ universal PDFs, $f_{a/p}$, determined with error bands

0.8

0.6

H1

10³

Upper limit: $R_q < 0.65 \cdot 10^{-3}$ fm

^{10⁴} Q² [GeV²]

universal PDFs, $f_{a/p}$, determined with error bands

Any substructures at 10^{-18} m?

No. Quarks are still pointlike

10

HERAPDF for LHC

HERA as a Super-microscope:

- best ever measurement of the proton structure down to 0.001 fm (F_2 , F_L , xF_3)
- lots of glue at low $x \Rightarrow$ in high enery limit QCD processes are gluon-driven

HERA as QCD factory

HERA as QCD factory

Jets at HERA

Running α_s in a single experiment!

Jets at HERA

Running α_s in a single experiment!

HERA results are comparable (and competetive) with the world average

Errors are dominated by theoretical uncertainties (calculations are lacking HO (NNLO) terms)

Jets at HERA

Lots of glue in the proton \Rightarrow long gluon cascade at low x. Perturbative expansion of evolution equations $\sim \sum_{mn} A_{mn} \ln(Q^2)^m \ln(1/x)^n$ hard to calculate explicitly \Rightarrow approximations needed e www. **DGLAP:** resums $\ln(Q^2)^n$ terms, neglecting $\ln(1/x)^n$ terms Q2 strong k_T ordering in partonic cascade х resums $\ln(1/x)^n$ terms **BFKL:** no k_T ordering in partonic cascade \Rightarrow more hard gluons are radiated far from the hard interaction vertex 000000000000 <u>mmmm</u> $\mathbf{x}_{0}, \mathbf{k}_{10}^{C}$ angular ordered parton emission \Rightarrow **CCFM:** reproduces DGLAP at large x and BFKL at $x \rightarrow 0$

- How long is partonic cascade at HERA, at small x?
- Do the $\ln(1/x)^n$ terms play a major role in parton dynamics as suggested by BFKL?

 \Rightarrow Look at (multi)jet final states at low x in different configurations

Jets at HERA: New dynamics?

look at different topologies especially with forward jets

Jets at HERA: New dynamics?

Jets at HERA: New dynamics?

Diffraction

Diffraction

Diffraction in HEP =

Colorless exchange carrying vacuum quantum numbers

2. Quark-Parton Model \Rightarrow QCD

A(s,t) = $g_1(m_1, M_1, t) g_2(m_2, M_2, t) rac{s^{lpha(t)} \pm (-s)^{lpha(t)}}{\sin(\pi lpha(t))} = \int f_{i/a}(x_i, \mu^2) \cdot f_{j/b}(x_j, \mu^2) \cdot \hat{\sigma}_{ij}(x_i, x_j, \mu^2)$

hadronic language

sub-hadronic language

 $\sigma_{ab} =$

Ultimate goal: derive (1) from (2)

- Hadronic degrees of freedom
- Validity: large $s \gg t$
- $I\!P$ dominates: $\alpha_{I\!P}(0) > \alpha_{I\!R}(0)$ $ightarrow \sigma_{
 m tot} \propto s^{lpha_{I\!\!P}(0)-1}$
- Unitarity corrections unavoidable $(\sigma_{\text{tot}} \leq \ln^2(s/s_0) \text{ at } s \to \infty)$
- When? $s_{sat} = ?$

- Partonic degrees of freedom
- Low x: $W^2 \gg Q^2$, $t (Q^2/W^2 \simeq x \ll 1)$
- gluons dominate: $xq(x) \gg xq_{val}(x)$ $F_2(x,Q^2) \propto xq(x) \sim x^{-\lambda}$
- Saturation of the xq(x)(non-linear effects, shadowing, ...)
- $x_{sat}(Q_{sat}) = ?$
- First to be seen in diffraction: $\sigma_D \propto s^{2(\alpha-1)}$ First to be seen in diffraction: $\sigma_D \propto |xg(x)|^2$
- \Rightarrow Diffraction \equiv Physics of the Pomeron, \Rightarrow Diffraction \equiv Gluodynamics, the essence of strong interactions the essence of QCD (in high energy limit)

- Fundamental aim: understand high energy limit of QCD (gluodynamics; CGC ?)
- Novelty: for the first time probe partonic structure of diffractive exchange
- Practical motivations: study factorisation properties of diffraction; try to transport to *hh* scattering (e.g. predict diffractive Higgs production at LHC)

Experimental methods:

1) selecting LRG events

$$x_{I\!\!P} = \xi = rac{Q^2 + M_X^2}{Q^2 + W^2}$$

(momentum fraction of colour singlet exchange)

$$eta = rac{Q^2}{Q^2 + M_X^2} = x_{q/I\!\!P} = rac{x}{x_{I\!\!P}}$$

(fraction of exchange momentum, coupling to γ^*)

 $t = (p - p')^2$

(4-momentum transfer squared)

Inclusive Diffraction in DIS

of diffraction in DIS 1992 data, 24.7 nb^{-1}

Inclusive Diffraction in DIS

- First observation of diffraction in DIS 1992 data, 24.7 nb^{-1}
- Compelling confirmation of the NLO QCD picture of diffraction over a wide kinematic range. Clear candidate for the textbook!
- Diffractive PDFs are determined from these data. Are they universal?

Factorisation properties in diffraction

QCD factorisation

(rigorously proven for DDIS by Collins et al.):

Regge factorisation

(conjecture, e.g. RPM by Ingelman, Schlein):

 $\sigma_r^{D(4)} \propto \sum_i \hat{\sigma}^{\gamma^*i}(x,Q^2) \otimes f_i^D(x,Q^2;x_{I\!\!P},t)$

- $\hat{\sigma}^{\gamma^* i}$ hard scattering part, same as in inclusive DIS
- f_i^D diffractive PDF's, valid at fixed $x_{I\!\!P}, t$ which obey (NLO) DGLAP

$$F_2^{D(4)}(x_{I\!\!P},t,eta,Q^2)=\Phi(x_{I\!\!P},t)\cdot F_2^{I\!\!P}(eta,Q^2)$$

• In this case shape of diffractive PDF's is independent of $x_{I\!\!P}, t$ while normalization is controlled by Regge flux $\Phi(x_{I\!\!P}, t)$

QCD Factorisation holds in DIS regime, e.g.:

QCD Factorisation holds in DIS regime, e.g.:

However, it breaks down at Tevatron ...

QCD Factorisation holds in DIS regime, e.g.:

However, it breaks down at Tevatrondue to soft remnant rescattering ($S \sim 0.15$)

QCD Factorisation Tests in Diffraction at HERA

M

However, it breaks down at Tevatrondue to soft remnant rescattering ($S \sim 0.15$)

QCD Factorisation holds in DIS regime, e.g.:

direct, $x_{\gamma} = 1$ (DIS-like)

e) resolved, $x_{\gamma} < 1$ (hadron-like)

QCD Factorisation Tests in Diffraction at HERA

QCD Factorisation holds in DIS regime, e.g.:

However, it breaks down at Tevatrondue to soft remnant rescattering ($S \sim 0.15$)

\Rightarrow Test it in photoproduction:

direct, $x_{\gamma} = 1$ (DIS-like)

resolved, $x_{\gamma} < 1$ (hadron-like)

• Global, x_{γ} -independent suppresion factor is observed – somewhat unexpected

 \Rightarrow Details of factorisation breaking mechanism in γp at HERA are not fully understood yet

Standard Model survived 1 fb⁻¹ of HERA data and is still in a good shape. Next challenge is now coming from the LHC - stay tuned!

Combining H1 and ZEUS data allowed proton structure to be measured with unprecedental precision

NLO DGLAP is surprisingly successful down to low Q^2 and low x in describing bulk of HERA data. However, some room for parton evolution beyond DGLAP is found at specific phase space corners \Rightarrow important message for LHC

Gained new insights into high energy diffraction: Pomeron under the HERA microscope shows complicated interplay of soft and hard phenomena. Understanding colour singlet exchange remains a major challenge in QCD

Is this the end of DIS experiments? Or what's next at the horizon?

Project under discussion

For late LHC period: $\sim 2022 - 2032$

Fixed target experiments

- ▷ Rutherford 1911 (7 MeV, αAu) structure of atoms ⇒ planetary model ⇒ quantum mechanics
- Hofstadter 1953 (400 MeV, eA) structure of the nucleus; determination of the size of A and p
- $\triangleright \ \mathsf{SLAC} 1968 \ (20 \ \mathsf{GeV}, \ ep)$ structure of the proton \Rightarrow quarks \Rightarrow QPM
- \triangleright SPS@CERN 1976 (EMC, NA4, etc. studying DIS with μ beam)

Collider experiments

- ▷ HERA 1992 (27.5 × 920 GeV ep) gluon dominated proton (and Pomeron); low x QCD; EW sector of SM
- ▷ LHeC 2022 (60×7000 GeV, ep/eA) not approved yet non-linear QCD? Strong parton saturation? BSM phenomena?