

Heavy flavor measurements in heavy ion collisions

Jaroslav Bielčík

STAR+ALICE collaboration

FNSPE, Czech Technical University in Prague

Seminár FzÚ AV ČR, Prague, March 2012

Outline

- Heavy ion collisions
- Motivation for heavy flavor physics
- STAR + ALICE detectors
- Open heavy flavor
 - Charm mesons
 - Non-photonic electrons
- Quarkonia
 - J/ψ and Υ measurements
- Summary

Relativistic Heavy Ion Collider

RHIC site in BNL on Long Island - taking data from 2000

RHIC has been exploring nuclear matter at extreme conditions over the last years

Lattice QCD predicts a phase transition from hadronic matter to a deconfined state, the Quark-Gluon Plasma

Colliding systems: $p\uparrow+p\uparrow$, d+Au, Cu+Cu, Au+Au Cu+Au, U+U Energies $\sqrt{s_{NN}} = 20, 62, 130, 200 \text{ GeV}$ (500 GeV) + 7.7, 11.5, 27, 39 GeV

HEP 2007 Manchester, England

Overall view of the LHC experiments.

p+p900 GeV, 7 TeV (14 TeV)Pb+Pb2.76 TeV (5.5 TeV)p+Pb2012?

Heavy ion experiments: ALICE ATLAS + CMS hardprobes

Little Big Bang in laboratory

• compress large amount of energy in a very small volume

- produce a "fireball" of hot matter:
 - temperature $O(10^{12} \text{ K})$
 - ~ 105 x T at center of Sun
 - ~ T of universe @ ~ 10 µs after Big Bang
- how does matter behave under such extreme conditions?
- study the fireball properties
- QCD predicts state of deconfined quarks and gluons (Quark-Gluon Plasma)

Exploring QCD phase diagram

Nuclear modification factor

- Hard probes produced in hard scatterings in initial phase of collision
- Nuclear matter influences the final particle production

e.g. production of particles at given \boldsymbol{p}_{T}

supresion of particle production of particular type

Nuclear modification factor - quantification of nuclear effects R_{AA}

$$R_{AA}(p_T) = \frac{\text{Yield}_{AA}(p_T)}{\langle Nbin \rangle_{AA} \text{Yield}_{pp}(p_T)}$$

jaroslav.bielcເເເພງແດບນແດະ

Heavy quarks as a probe of QGP

• p+p data:

 \rightarrow baseline of heavy ion measurements. \rightarrow test of pQCD calculations.

• Due to their large mass heavy quarks are primarily produced by gluon fusion in early stage of collision.

 \rightarrow production rates calculable by pQCD. M. Gyulassy and Z. Lin, PRC 51, 2177 (1995)

- heavy ion data:
- Studying energy loss of heavy quarks.
 → independent way to extract properties of the medium.
- Studying the quarkonia suppression

\rightarrow deconfinement

ENERGY LOSS

M.Djordjevic PRL 94 (2004)

Quarkonia states in A+A

Charmonia: J/ψ, Ψ', χ_c Bottomonia: Υ(1S), Υ(2S), Υ(3S)
 <u>Key Idea:</u> Quarkonia melt in the QG plasma due to color screening of potential between heavy quarks
 Suppression of states is determined by T, and their binding

- Suppression of states is determined by T_C and their binding energy
- Lattice QCD: Evaluation of spectral functions $\Rightarrow T_{melting}$

Sequential disappearance of states:

 \Rightarrow Color screening \Rightarrow Deconfinement

 \Rightarrow QCD thermometer \Rightarrow Properties of QGP

When do states really melt?

 $\mathsf{T}_{\mathsf{diss}}(\psi') \approx \mathsf{T}_{\mathsf{diss}}(\chi_c) < \mathsf{T}_{\mathsf{diss}}(\Upsilon(3S)) < \mathsf{T}_{\mathsf{diss}}(\mathsf{J}/\psi) \approx \mathsf{T}_{\mathsf{diss}}(\Upsilon(2S)) < \mathsf{T}_{\mathsf{diss}}(\Upsilon(1S))$

STAR detector and Particle ID

Large acceptance $|\eta| < 1, \ 0 < \phi < 2\pi$

- Time Projection Chamber dE/dx, momentum
- Time Of Flight detector particle velocity 1/β
- ElectroMagnetical Calorimeter E/p, single tower/topological Trigger

Open heavy flavor

D⁰ signal in p+p 200 GeV

jaroslav.bielcik@fjfi.cvut.cz

STAR QM2011

$$D^0(D^0) \to K^{\pm} \pi^{\pm}$$

B.R. = 3.89%

- p+p 200 GeV MB 105 M
- 4- σ signal observed.
 - Different methods reproduce combinatorial background.

D* signal in p+p 200 GeV

STAR QM2011

- Minimum bias 105M events in p+p 200 GeV collisions.
- Two methods to reconstruct combinatorial background: wrong sign and side band.
- 8- σ signal observed.

Side band:

 $1.72 < M(K\pi) < 1.80$ or

 $1.92 < M(K\pi) < 2.0 \text{ GeV/c}^2$

D^0 and $D^* p_T$ spectra in p+p 200 GeV

[1] C. Amsler et al. (Particle Data Group), PLB 667 (2008) 1.[2] Fixed-Order Next-to-Leading Logarithm: M. Cacciari, PRL 95 (2005) 122001.

jaroslav.bielcik@fjfi.cvut.cz

Charm cross section vs N_{bin}

Charm cross section follows number of binary collisions scaling => Charm quarks are mostly produced via initial hard scatterings.

jaroslav.bielcik@fjfi.cvut.cz

$D^0 R_{AA} vs p_T$

• No obvious suppression at $p_T < 3$ GeV/c.

• Blast-wave predictions with light hadron parameters are different from data.

 \Rightarrow D⁰ freeze out earlier than light hadrons.

ALICE charm measurements

ALICE SQM2011

- Using secondary vertex detectors
- Excellent capability to measure wide p_T spectrum on many charm mesons + Λ_c

Comparison to pQCD

- Data compatible with pQCD prediction within ALICE SQM2011 uncertainties
 - As observed at lower energies, data are on the upper edge of FONLL uncertainty band

Prompt D meson R_{AA}

- Suppression of prompt D mesons in central (0-20%)
 Pb+Pb collisions by a factor 3-4 for p_T>5 GeV/c
 - Smaller suppression for peripheral events

Prompt D meson R_{AA}

- Little shadowing at high $p_T \rightarrow$ suppression is a hot matter effect
- Similar suppression for D mesons and pions
 - Hint of $R_{AA}^{D} > R_{AA}^{T}$ at low p_{T}
 - CMS measurement of displaced J/ ψ (from B feeddown) indicate R_{AA}^B > R_{AA}^D

Measurement of non-photonic electrons

Background Dominated by Photonic Electrons from :

$$\pi^{0} \rightarrow \gamma + e^{+} + e^{-}$$
$$\eta \rightarrow \gamma + e^{+} + e^{-}$$

Same for All Experiments

 $\gamma \rightarrow e^+ + e^-$ Depend on Experiment

$$\pi^0(\eta) \to \gamma + \gamma$$

Mostly from

•Conversion probability: 7/9* X₀

When X_0 is large, gamma conversion dominate all the background.

These background has to be properly subtracted

Still mixture of B,D origin

Non-photonic R_{AA} at RHIC

Electrons from Heavy Flavour decays

- Subtracted cocktail of electron background based on the measured π⁰ spectrum + m_t-scaling + pQCD direct photons.
- Good agreement with FONLL b+c over the full pt range
- Consistent with the prompt charm measurement from D mesons

Electrons from Beauty decays

Strategy : select electrons from displaced vertexes

Impact parameter analysis

QUARKONIA J/ψ

SQM11 LHC results

$J/\psi \rightarrow e^+e^-$ signals

- Significantly reduced material in 2009 p+p and 2010 Au+Au collisions
- Clear signal for high- p_T in both p+p and Au+Au 200 GeV collisions

Di-muons in PbPb at 2.76 TeV

Quarkonia Suppression Similarity in \sqrt{s}

Overall suppression of J/ψ is nearly identical between RHIC, SPS, & LHC

- different conditions similar suppression
- how to get full control on cold nuclear matter effects

Quarkonia Suppression Levels Differ in Details

Forward-rapidity is suppressed more than Mid-rapidity

centrality

• Less suppression in ALICE than in ATLAS

– ATLAS:

- |y|<2.5
- 80% of J/ ψ have p_T>6.5 GeV/c

error in the 40-80% bin not propagated

 $\Rightarrow ALICE:$ $\checkmark \mu^{+}\mu^{-} in 2.5 < y < 4.0$ $\checkmark e^{+}e^{-} in |y| < 0.8$ $\checkmark p_{T} > 0 GeV/c$

Nuclear Modification of J/ ψ

- Factor 3 suppression for p_T > 6.5 GeV/c at y=0
- Trend to less suppression at forward rapidity
- ALICE: $R_{AA}(p_T^{J/\psi} > 0 \text{ GeV/c}, 2.5 < y < 4.0) = 0.49 \pm 0.03 \pm 0.11 (QM11)$ CMS: $R_{AA}(p_T^{J/\psi} > 3 \text{ GeV/c}, 1.6 < y < 2.4) = 0.39 \pm 0.06 \pm 0.03$

R_{AA} of Prompt J/ ψ vs. Centrality

- CMS $R_{AA}^{J/\psi}$ ~ PHENIX low- $p_T R_{AA}^{J/\psi}$
- CMS $R_{AA}^{J/\psi}$ < STAR $R_{AA}^{J/\psi}$ at intermediate p_T range
- Need more systematic comparison in the same p_T range

J/ψ spectra in 200GeV Au+Au collisions

STAR EPS 2011

- Good consistency between STAR and PHENIX.
- Significantly extends the p_T range to 10 GeV/c.
- J/ψ spectra significantly softer than the prediction from light hadrons.

Regeneration at low p_T ?

Tsallis Blast-Wave model: ZBT et al., arXiv:1101.1912; JPG 37, 085104 (2010)

jaroslav.bielcik@fjfi.cvut.cz

Phys. Rev. Lett. 98, 232301 (2007)

STAR CuCu: PRC80, 014922(R) PHENIX: PRL98, 232301

Yunpeng Liu, Zhen Qu, Nu Xu and Pengfei Zhuang, PLB 678:72 (2009) and private comminication

Xingbo Zhao and Ralf Rapp, PRC 82,064905(2010) and private communication

- Increase from low p_T to high $p_{T.}$
- Consistent with unity at high p_T in (semi-) peripheral collisions.
- More suppression in central than in peripheral even at high p_T .

Y. Liu, et al., PLB 678:72 (2009) X. Zhao and R.Rapp, PRC 82, 064905(2010)

- Systematically higher at high p_T in all centralities.
- Suppression in central collisions at high p_T .

J/ψ elliptic flow v_2

STAR QM2011

- Consistent with zero, first hadron that does not flow
- Disfavor coalescence from thermalized charm quarks at high p_{T} .

[1] V. Greco, C.M. Ko, R. Rapp, PLB 595, 202.
 [2] L. Ravagli, R. Rapp, PLB 655, 126.
 [3] L. Yan, P. Zhuang, N. Xu, PRL 97, 232301.
 [4] X. Zhao, R. Rapp, 24th WWND, 2008.
 [5] Y. Liu, N. Xu, P. Zhuang, Nucl. Phy. A, 834, 317.
 [6] U. Heinz, C. Shen, priviate communication.

QUARKONIA Y -> e⁺e⁻

Y Signal in Au+Au 200 GeV

jaroslav.bielcik@fjfi.cvut.cz

Υ(1S+2S+3S) R_{AA}

 Suppression of Y(1S+2S+3S) in central Au+Au observed.

 R_{AA} (0-60%) = 0.56±0.11(stat)+0.02/-0.14(sys)

R_{AA} (0-10%)=0.34±0.17(stat)+0.06/-0.07(sys)

Data from Run 2009 and Run 2011

will reduce the uncertainty by factor of ~2.

Υ(2S+3S) vs. Υ(1S) in PbPb

- Fraction of excited states Υ(2S+3S) relative to Υ(1S)
 - Core Gaussian with power-law tail of EM final state radiation
 - Resolutions and efficiencies fixed by MC
 - Peak separation fixed to the PDG values
 - Background as a second-order polynomial

- Needs more statistics: with the current statistics,
 - No obvious suppression at high p_T
 - No obvious rapidity dependence
- CMS Y(1S) R_{AA}(0-100%) = 0.62±0.11±0.10
- STAR Υ (1S+2S+3S) R_{AA}(0-60%) = 0.56±0.11^{+0.02}_{-0.10} (QM11)

Summary

- Heavy flavor is an important tool to understand medium properties.
- Results are interesting and challenging.

charm measurement

- Possibility to extract charm production cross section.
- FONLL QCD describes the data rather well.
- Hint of diferent suppresion of charm mesons and hadrons at ALICE.

J/ψ

- Puzzeling situation SPS x RHIC x LHC mid x forward
- Less suppression at high- p_T in STAR
- Flow consistent with zero

Y

- Signal observed in Au+Au collisions as well Pb+Pb
- Suppression of Y(1S+2S+3S) in central Au+Au observed.
- Suppression of Y(1S) in CMS

Politováníhodný je člověk, který s nejušlechtilejšími ze všech nástrojů, vědou a uměním, neusiluje o nic vyššího a k vyššímu nesměřuje než námezdná síla s nástrojem nejnižším! Protože v říši naprosté svobody v sobě nosí duši otroka!

Friedrich Schiller 1789

Future of Heavy Flavor Measurement at STAR

Source: Phys. Rept. 462: 125-175, 2008

Source: Phys. Rept. 462: 125-175, 2008

Upsilon in p+p 200GeV

Upsilon in d+Au 200GeV

Consistent with N_{bin} scaling of cross-section p+p - d+Au 200GeV

Y Yield by centrality

- System uncertainties
 - p+p luminosity and bbc trigger efficiency
 - 🗆 Υ Line-shape
 - Drell-Yan and bb background

STAR with HFT

All triggers included.

More than 4σ signal at low p_T and very significant at high p_T - mostly from EMC-based high neutral energy triggers.

Charmonia in nuclear matter

- Production mechanism is not clear
- Observed J/ ψ is a mixture of direct production + feeddown
 - -~ All J/ ψ ~ 0.6 J/ ψ (Direct) + ~0.3 χ_c + ~0.1 ψ '
- Suppression and enhancement in the "cold" nuclear medium
 - Nuclear Absorption, Gluon shadowing. initial state energy loss, Cronin effect and gluon saturation $T < T_c$ $T \cong 1.2 T_c$

H. Satz, Nucl. Phys. A (783):249-260(2007)

- Hot/dense medium effect
 - J/ ψ , Υ dissociation, i.e. suppression
 - Recombination from uncorrelated charm pairs

σ_{CC}: comparison with other measurements

FIG. 1. Representative diagrams contributing to Y hadroproduction at orders α_S^3 (a), α_S^4 (b,c,d), α_S^5 (e,f). See discussions in the text.

What can we learn at the LHC

- Higher c and b cross sections:
 - More abundant heavy flavour production
 - Better precision (reduced errors)

$$\sigma_{LHC}^{c\bar{c}} \approx 10 \cdot \sigma_{RHIC}^{c\bar{c}}$$
$$\sigma_{LHC}^{b\bar{b}} \approx 100 \cdot \frac{b\bar{b}}{RHIC}$$

- High precision vertex detectors
 - Background removal
 - Separate c and b

High T: the potential between the quarks is modified.

- Charmonium suppression: longstanding QGP signature
 - Original idea: High T leads to Debye screening
 - Screening prevents heavy quark bound states from forming!
 - J/ψ suppression:
 - Matsui and Satz, *Phys. Lett. B* 178 (1986) 416
 - lattice calculations confirm screening effects
 - Nucl.Phys.Proc.Suppl.129: 560-562,2004

O. Kaczmarek, et al., Nucl.Phys.Proc.Suppl.129:560-562,2004

J/ψ in Pb+Pb at 2.76 TeV

First time that the prompt and non-prompt J/ ψ 's are separated in heavy-ion collisions =90±13 [B \rightarrow J/ ψ] events for p_TJ/ ψ > 6.5 GeV/c

