Binary and multiple stellar systems from data analysis of the space observatory GAIA

Petr Závada and Karel Píška

Institute of Physics
of the Czech
Academy of Sciences

Seminar of Division of Elementary Particle Physics 30/11/2023

Outline

\square A few words about the Gaia observatory
\square Analysis of astrometric data - inspired by heavy-ions physics
\square Wide binaries and multiple bound systems
\square Physical motivation
\square Selection algorithmResults of analysis
\square What next?
\square Summary and conclusion

```
Details can be found in Zavada P. and Píška K.:
[1] A statistical analysis of two-dimensional patterns and its application to astrometry, 2018 A\&A 614 A137
[2] Statistical Analysis of Binary Stars from the Gaia Catalog Data Release 2, 2020 AJ 15933
[3] Catalog of Wide Binary, Trinary and Quaternary Candidates from the Gaia Data Release 2 (Region /b/>25), 2022 AJ 16333
```


A few words about Gaia

[5] Gaia Collaboration, T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, C. Babusiaux, C. A. L. Bailer-Jones, U. Bastian, M. Biermann, D. W. Evans and et al. (2016b) The Gaia mission. A\&A 595, pp. A1.
[6] Gaia Collaboration, A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, F. Mignard, R. Drimmel, C. Babusiaux, C. A. L. Bailer-Jones, U. Bastian and et al. (2016a) Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. A\&A 595, pp. A2. [7] Gaia Collaboration, F. Arenou et al. Gaia Data Release 1. Catalogue validation. A\&A 599 (2017), pp. A50.

Gaia is located at L2, 1.5 million kilometres from Earth. (Webb telescope is located also at the $\mathbf{L 2}$ - at a safe distance)

L_{i} - Lagrange points stable position relative to the Earth

Three-body problem: $\mathrm{m}_{\text {Gaia }}$ « $\mathrm{m}_{\text {Sun }}, \mathrm{m}_{\text {Earth }}$
?

Gravitational forces of Sun and Earth and centrifugal force are compensated

MILKY WAY STARS - DATA MEASURED BY GAIA

Data release 3 includes a total of 1.8 billion Milky Way stars - providing astronomers with an unprecedented view of stellar characteristics and their life cycle, and the galaxy's structure and evolution.
$\approx 1 \%$ of MW objects

Variable stars 10 million Changing brightness

High resolution spectroscopy

5.6 million

 astrophysical parameters2.5 million chemical compositions
1 million spectra
Chemical composition
Temperature | Mass | Age

Unique data are free!

Galactic reference frame, SUN sits in its origin

 We deal with: angular positions (2) +proper motion (2) + magnitude+ parallax

Milky Way Disc
$R \approx 14 \mathrm{kpc}, \Delta \mathrm{z} \approx 0.3 \mathrm{kpc}$
$\mathrm{V} \approx 600 \mathrm{~km} / \mathrm{s}, \mathrm{R}_{\mathrm{s}} \approx 8 \mathrm{kpc}$ $1-4 \times 10^{11}$ stars $>10^{11}$ planets
$1 \mathrm{kpc} \approx 3260 \mathrm{ly}$
parameters show, what scales we are working at.

... in better resolution:

Our research is based on a statistical analysis of the patterns within the circles covering the sky. The method of analysis is motivated by methods known from HI physics (ALICE).

ALICE - A Large Ion Collider Experiment

provides data on HI collisions

In HI we study momentum distribution in the transverse plane.

We study patterns like this:

patterns generated in HI are very similar to patterns in the sky. We will try to apply HI methods to analysis of the sky patterns - after some modification.

Analysis

We analyze distribution of random points (stars) inside the circles (we call them events). Deviations from uniform distributions may indicate an interesting physics. How to define and find these deviations?

Do we observe more pairs of close stars than random statistics allow?

Inspiration by HI: Fourier analysis

a very useful tool for discussing azimuthal correlations and asymmetries in the transverse plane

In HI we work with this form of Fourier decomposition: (v_{n}, Ψ_{n} are free parameters)

$$
P(\varphi)=\frac{1}{2 \pi}\left(1+2 \sum_{n=1}^{\infty} v_{n} \cos \left[n\left(\varphi-\Psi_{n}\right)\right]\right)
$$

If $\langle f(\varphi)\rangle \equiv \int_{-\pi}^{\pi} P(\varphi) f(\varphi) d \varphi$
then for any n : Decomposition $\mathrm{n}=1,2,3,4$:

$$
\begin{aligned}
v_{n} & =\left\langle\cos \left[n\left(\varphi-\Psi_{n}\right)\right]\right\rangle \\
\tan \left(n \Psi_{n}\right) & =\frac{\langle\sin (n \varphi)\rangle}{\langle\cos (n \varphi)\rangle}
\end{aligned}
$$

The individual terms represent different kinds of azimuthal asymmetry. e.g. directed flow, elliptic flow,...

Finite patterns, event-by-event

For a finite set $\left\{\varphi_{1} \ldots \varphi_{M}\right\} ; \quad-\pi<\varphi_{i}<\pi$ of multiplicity M we replace

$$
\langle f(\varphi)\rangle \equiv \int_{-\pi}^{\pi} P(\varphi) f(\varphi) d \varphi
$$

by

$$
\langle f(\varphi)\rangle_{M} \equiv \frac{1}{M} \sum_{k=1}^{M} f\left(\varphi_{k}\right)
$$

then for any n :

$$
\begin{aligned}
v_{n}(M) & =\left\langle\cos \left[n\left(\varphi-\Psi_{n}\right)\right]\right\rangle_{M} \\
\tan \left(n \Psi_{n}(M)\right) & =\frac{\langle\sin (n \varphi)\rangle_{M}}{\langle\cos (n \varphi)\rangle_{M}} .
\end{aligned}
$$

\Rightarrow Average over events: $\left\langle v_{n}^{2}(M)\right\rangle=\frac{1}{M}\left[1+\frac{2}{M} \sum_{1 \leq k<l \leq M}\left\langle\cos \left(n \varphi_{k}^{j}-n \varphi_{l}^{j}\right)\right\rangle\right]$
For $M \rightarrow \infty \quad\langle f(\varphi)\rangle_{M} \rightarrow\langle f(\varphi)\rangle, \quad v_{n}(M) \rightarrow v_{n}, \quad \Psi_{n}(M) \rightarrow \Psi_{n}$
For uniform distribution:

$$
M\left\langle v_{n}^{2}(M)\right\rangle=1
$$

Classification of the event sets

Definition of characteristic functions:

$$
\Theta_{n}(M)=M\left\langle v_{n}^{2}(M)\right\rangle=\frac{M}{N_{M}} \sum_{k=1}^{N_{M}} v_{n, k}^{2}(M)
$$

where N_{M} is the number of events of multiplicity M, involve important information about character of patterns (events)

Examples:

$\Theta_{n}(M)=1$
$\Theta_{n}(M)>1$
$\Theta_{n}(M)<1$

Toy examples - simulation

Fig. 4. The functions $\Theta_{n}(M), n=1,2,3$ for Monte-Carlo events in the scenario of uniform distribution (upper panels). The remaining represent clustering $\lambda=1 / 3$ (middle panels) and anti-clustering scenario $\lambda=1 / 20$ (lower panels). The each multiplicity bin is generated by $N_{M}=6000$ events. The red lines correspond to the expected dependence for uniform distribution, $\Theta_{n}(M)=1$ (Eq. (34)).

Data from ALICE

pp data, LHC10e, run 127712, $p_{T}>0.3 G e V / c,|\eta| \leq 0.7$.

pPb data, LHC13b, run 195351, $p_{T}>0.3 \mathrm{GeV} / c,|\eta| \leq 0.7$.

PbPb data, LHC10h, run 137544, $p_{T}>0.3 G e V / c,|\eta| \leq 0.7$.
Clustering in momentum space = azimuthal asymmetry

Data from GAIA

The characteristic functions clearly indicate the presence of multiple star systems, mostly binaries.

We will try to study them in more detail.

longitude

Clustering, now in stellar field (transverse projection)

Wide binaries and multiple bound systems

\square A binary star is a system of two stars that are gravitationally bound and orbiting each other.
\square More than half of all stars are binaries
\square Orbital periods varies: hours - thousands years
\square Multiple systems are much less probable

\square Gaia astrometric data allow to identify wide binaries separated >0.5" (treshold of resolution) - this class will be subject of our analysis

Physical motivation (wide binary)

Can provide deeper insight into the formation and evolution of galaxiesMay serve as a probe of galactic gravitational potential\square May provide data on the presence of dark matter in the galaxy
(see references in [3])

Input data

Table 1
Analyzed Regions $\boldsymbol{R}_{1,2}$ in the DR2 Catalog, where ρ_{2} is the Angular Radius of the Events, $\langle L\rangle,\langle\boldsymbol{M}\rangle$ are Average Distance and Event Multiplicity, and N_{e} is the Total Number of Events

	2D Region: $l \times b\left(\mathrm{deg}^{2}\right)$	$\rho_{2}(a s)$	$\langle L\rangle(\mathrm{pc})$	$\langle M\rangle$	N_{e}	N_{s}	$N_{\text {tot }}$
R_{1}	$\langle-180,180\rangle \times\langle \pm 45, \pm 90\rangle$	72	1807	3.86	$5,887,737$	$22,083,670$	$30,643,238$
R_{2}	$\langle-180,180\rangle \times\langle \pm 25, \pm 45\rangle$	72	2134	7.86	$6,985,043$	$53,043,629$	$80,653,496$

Note. Only sources with positive parallax and in distance $<15,000 \mathrm{pc}$ are taken into account and only events $2 \leqslant M \leqslant 25$ are accepted for present analysis. N_{s} is number of sources after these cuts, and $N_{\text {tot }}$ is total number of sources with positive parallax in $\boldsymbol{R}_{1,2}$.

Multiplicity distribution

\mathbf{R}_{1} : sparse region, almost constant density, nearly Poisson ditribution
$\mathbf{R}_{\mathbf{2}}$: dense region, fluctuating density - great open clusters, imprint of Galactic spiral pattern...

Selection algorithm

For binaries we expect:
\square Small (angular) separation, d_{ij} (angle between position vectors)
\square Small angle between proper motion vectors, α_{ij} (common motion of bound stars)
u - proper motion, 2D angular velocity

$$
\alpha_{\mathrm{ij}}=\arccos \frac{\boldsymbol{u}_{i} \cdot \boldsymbol{u}_{j}}{u_{i} u_{j}}
$$

peak region defined by the cuts: $d_{\mathrm{ij}} \leqslant 15$ as,$\quad \alpha_{\mathrm{ij}} \leqslant 15^{\circ}$
Candidates are defined by these cuts

Background

$$
\begin{aligned}
& \text { BaCkground } \\
& x_{\mathrm{ij}}=\left|x_{j}-x_{i}\right| ; \quad \begin{array}{ll}
y_{\mathrm{ij}}=\left|y_{j}-y_{i}\right| ; & \begin{array}{l}
\text { BG is calculated as } \\
\text { the distribution of } \\
\text { separations of } \\
\text { random points inside }
\end{array} \\
d_{\mathrm{ij}}=\sqrt{x_{\mathrm{ij}}^{2}+y_{\mathrm{ij}}^{2}} ; \quad \begin{array}{ll}
i, j=1,2, \ldots M, \\
\text { the circle (all pairs } \\
\text { enter distribution }) .
\end{array} \\
\hat{\xi}=\frac{d_{\mathrm{ij}}}{2 \rho_{2}} ; \quad 0 \leqslant \hat{\xi} \leqslant 1, & \text { see [1] } \\
q(\hat{\xi})=\frac{16 \hat{\xi}}{\pi}\left(\arccos \hat{\xi}-\hat{\xi} \sqrt{1-\hat{\xi}^{2}}\right)
\end{array}
\end{aligned}
$$

Random separations have universal distribution, does not depend on M.

The red curve q precisely defines the background, the area of the peak above the curve represents the number of binaries.

Quality ratio: $\quad \beta=n_{P} /\left(n_{P}+n_{B}\right)$ can be increased by additional cuts.

Remark:

We worked also with 3D grid (see [2]):
 3D

3D turned out to be less effective, we prefer 2D [3]
Random separations in 3D: $P(\hat{\xi})=12 \hat{\xi}^{2}\left(2-3 \hat{\xi}+\hat{\xi}^{3}\right)$

Disadvantage: due to the low accuracy of the radial separation, many true pairs exceed the diameter of the event ball. Such pairs are lost.

Results on wide binaries

1. Projected absolute separation (binary peak region)

Since we know parallax, we can calculate distance L
If $\mathrm{d}_{\mathrm{ij}}=$ angular separation, then absolute separation of both stars:

$$
\Delta_{\mathrm{ij}}=d_{\mathrm{ij}} \frac{L_{i}+L_{j}}{2}
$$

2. Periods and masses of binaries

Figure 14. (a): correlation of the transverse separation Δ_{ij} with the transverse velocity v_{ij} of orbital motion in region \boldsymbol{R}. (b) and (c): distributions of Δ_{ij} and v_{ij} in domain (37). Units: $\Delta_{\mathrm{ij}}[\mathrm{pc}], v_{\mathrm{ij}}\left[\mathrm{kms}^{-1}\right]$. Binning: $0.001 \mathrm{pc} \times 0.1 \mathrm{~km} \mathrm{~s}^{-1}, 0.001 \mathrm{pc}, 0.1 \mathrm{~km} \mathrm{~s}^{-1}$.

Orbital velocity estimation (projection):

$$
v_{\mathrm{ij}}=\left|\boldsymbol{u}_{i}-\boldsymbol{u}_{j}\right| \frac{L_{i}+L_{j}}{2}
$$

With the use of Kepler's law of periods

$$
T_{g}=2 \pi \sqrt{\frac{a^{3}}{G M_{\mathrm{tot}}}}
$$

we obtain approximate average [2,3]

$$
\langle T\rangle \approx 4.2 \times 10^{4} \mathrm{y}, \quad\left\langle M_{\mathrm{tot}}\right\rangle \approx 0.65 M_{\odot}
$$

3. Catalog of wide binaries

1. step: selection of pairs is defined the condition :

$$
d \leqslant 15 \text { as }, \quad \alpha \leqslant 15^{\circ}, \quad \Delta L \leqslant \Delta L_{\max }
$$

$$
\mathbf{R}_{1}: \quad \Delta L \leqslant \Delta L_{\max }=500 \mathrm{pc}
$$

Cuts on Radial Separation in Galactic Longitude Subregions of Region \boldsymbol{R}_{2}

$[$ [deg $]$	$\langle-30,+30\rangle$	$\langle \pm 30, \pm 90\rangle$	$\langle 90,270\rangle$
$\Delta L_{\max }[\mathrm{pc}]$	50	100	400

d, α define peak region, $\Delta \mathrm{L}$ reduces background. Calculation of corresponding background for this selection gives quality ratio $\langle\beta\rangle>0,75$

Too strict cuts generate a cleaner sample of binaries (higher $\langle\beta\rangle$), but more binaries are excluded. And vice versa, too soft cut preserves more binaries, but at the price of the higher background (lower $\langle\beta\rangle$).
2. step - wide Trinaries and Quaternaries:

Condition for binary (pair with a line) is satisfied by any pair in the bound system:
a

1 b

2 b

1 t

1 q

ambiguous - rejected

More detailed procedure including evaluation of random background is described in [3].
3. step - from circle events to squares We used squares instead of circles (full field coverage) for the final selection of candidates. Circle events were important for background calculation. Background level does not depend on event shape.

The resulting statistics (from 75127299 analysed stars)

m	N_{m}^{A}	β	n_{m}^{A}	Δn_{m}^{A}
2	900,842	0.733	660,317	696
3	5282	0.923	4875	67
4	30	1.	30	6

Number of multiple systems decreases with m : $\frac{n_{3}^{A}}{n_{2}^{A}} \approx 0.7 \%, \quad \frac{n_{4}^{A}}{n_{3}^{A}} \approx 0.6 \%$

Figure 19. Distances of all candidate sources. Binning: 30 pc .
Gaia data involve limited number of stars of known radial velocity. Binaries should have similar $R V$. Points $\left(R_{1}, R_{2}\right)$ in one line prove it.

Figure 20. Correlation of radial velocities for 6469 pairs. Unit: $\left[\mathrm{km} \mathrm{s}^{-1}\right]$.

Comparison with others

Numbers of the Binary Candidates in the Compared Catalogs

	$N_{\text {tot }}$	$N_{b>25}$	Reference/DR
A1	900,842	900,842	this paper/DR2
A2	$1,256,400$	496,888	El-Badry et al. (2021)/EDR3
A3	93,898	55,319	Hartman \& Lépine (2020)/DR2
A4	80,560	40,107	Zavada \& Písika (2020)/DR2
A5	3055	381	Jiménez-Esteban et al. (2019)/DR2
A6	9977	5546	Sapozhnikov et al. (2020)/DR2

\square A critical comparison of the catalogues is described in more detail in [3]. Our A1 is comparable to $\mathbf{A 2}$, and we have 2 x more candidates in the region $|\mathrm{b}|>25$. Our algorithm involves accurate background estimation, which implies a strong background in the $|\mathrm{b}|<25$ region - especially for distant sources.
\square Our catalogs A1, A4 are available at https://www.fzu.cz/~piska/Catalogue/For practical use, we have also created a merged catalog A1+A3+A4+A5+A6.We plan our A1 reprocess with next data release DR4, in the enlarged region, and using the further optimized algorithm.

What next?

\square We continue to work with Gaia data, our interest is focused on MW kinematics.
\square We work with angular velocities (proper motion) - projection of 3D motion on celestial sphere.
\square Despite of reduced information on motion we are able to reconstruct important parameters, like $\mathrm{V}_{\text {sun }}$, or rotational curves: $\mathrm{V}(\mathrm{R}), \mathrm{V}(|\mathrm{Z\mid}| \ldots$ (see PZ, KP arXiv: 2308.11060)

Summary and conclusion

\square Inspired by particle physics, we developed a statistical method for analysis of 2D \& 3D patterns. The method can detect subtle deviations from random distributions, like a tendency to (anti-) clustering.
\square This methodology has been applied to the detection of wide binaries and multiple star systems in Gaia data ($|\mathrm{b}|>25 \mathrm{deg}$). Main results:
\square Separation of binaries is limited roughly by $\Delta_{\max } \approx 0.15 \mathrm{pc}$.
\square For wide binaries in Gaia data ($\mathrm{d}>0.5^{\prime \prime}$) we estimate mean values

$$
\langle T\rangle \approx 4.2 \times 10^{4} y, \quad\left\langle M_{\text {tot }}\right\rangle \approx 0.65 \mathrm{M}_{\text {sun }}
$$

\square We have created extensive catalogs of wide binary, trinary and quaternary candidates.
\square We have started statistical analysis of MW kinematics.

Thank you for your attention!

Buckup slides

Step back to HI

In addition to the MW research, we plan to more thoroughly test the usefulness of the characteristic functions method in the ALICE HI data (my student V.Macháček).

Event parameters

Conditions for generating events:

\square The radius ρ_{2} must be significantly larger than a typical angular separation of true binary. At the same time, it must be so small that the distribution of stars within the event can be considered random and uniform.
\square Events with too high multiplicity, M, in which various dense structures may dominate, are excluded from processing. To improve the quality ratio, additional cuts can be imposed (e.g. radial separation).
\square The circular shape of the events is chosen due to the accurate formula for calculating a random background. Another shape would lead to a more complex function depending on other shape parameters (triangle, square, orientation ...).

