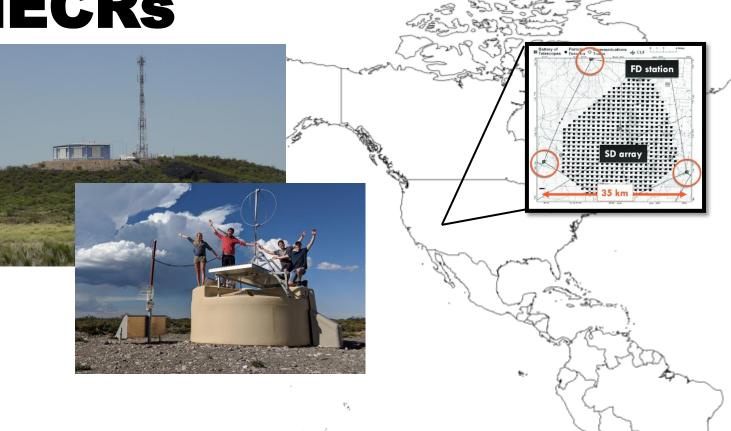

Ultra-high-energy cosmic rays: Anisotropies and potential origins

Alena Bakalová FZU – Institute of Physics of the Czech Academy of Sciences

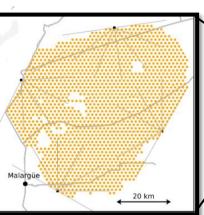
21.3.2024

Cosmic rays


- Charged particles coming from outer space
- Steep energy spectrum $\propto E^{-\gamma}$, $\gamma \sim 3$
- Changes in the spectral index might point to a physics behind their origin
 - Knee (2nd knee)
 - Ankle
 - Suppression
- + Ultra-high-energy cosmic rays (UHECRs) $E>10^{18}\,{\rm eV}$
- Interactions in the atmosphere lead to the creation of extensive air showers of secondary particles
 - Ultra-high energies showers at ground many km²

Detecting UHECRs

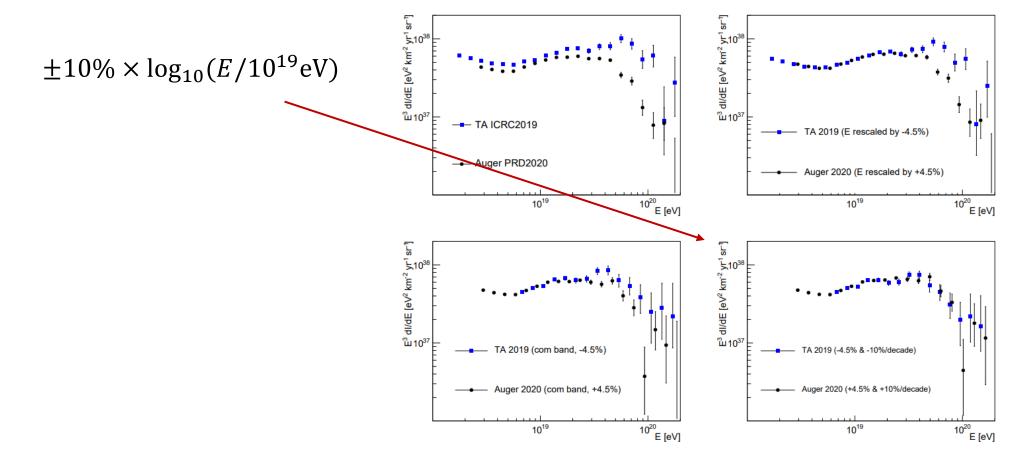
Pierre Auger Observatory


- Argentina, 3000 km^2
- Operating since 2004
- Recently finished an upgrade of the observatory – phase II

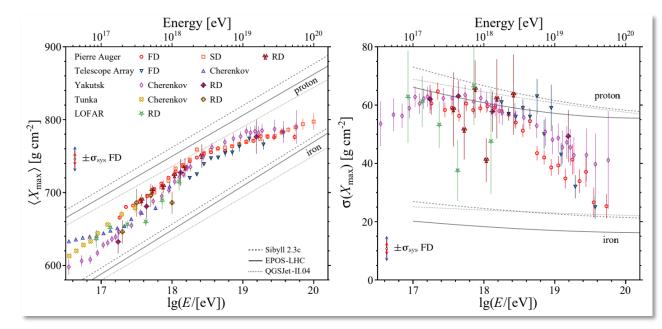
Telescope Array

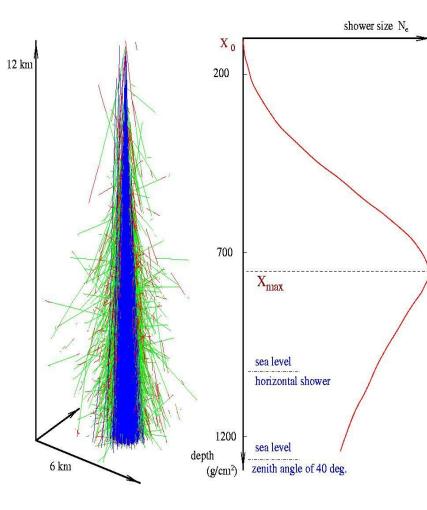
- Utah, USA
- 700 km²
- Upgrade to TAx4

3


Energy spectrum

- Precise measurements of the energy spectrum at the highest energies
- Pierre Auger Obsrvatory and Telescoep Array energy spectra show differences above few $\,10^{19}\,{\rm eV}$
 - Instrument effects? Different models for fluorescence yield? Different sources visible in the Southern and Northern hemisphere? ...

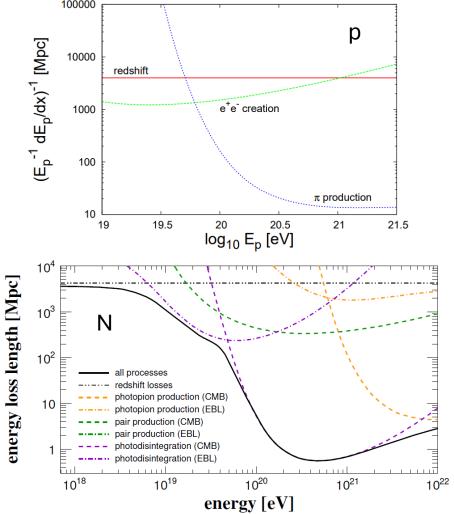

Energy spectrum


→ differences between Auger and TA energy spectra can be reduced by applying energy dependent shift and rescaling of the energy by $\pm 4.5\%$

Mass composition

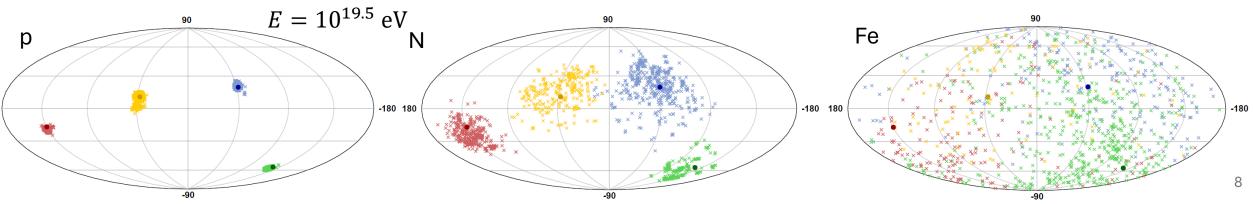
- Indirect measurement from shower parameters
- Most commonly used mass sensitive parameter is shower maximum
- Can not distinguish mass composition on event-by-event basis statistical distribution
- Large dependence on the models of hadronic interactions

Propagation in the Universe: Particle interactions


- Cosmic rays can interact with ambient photon fields and matter particles in the universe
- Mostly interactions on CMB
 - Photo-pion production

$$p + \gamma \to \Delta^+ \to \frac{p + \pi^0}{n + \pi^+}$$
, $E_{th} \cong 6.8 \cdot 10^{19} \left(\frac{\epsilon}{10^{-3} \text{ eV}}\right)^{-1} \text{eV}$

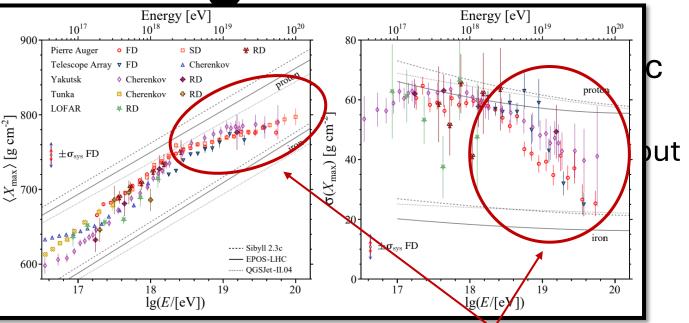
Electron pair production


$$E_{th} \cong 4.8 \cdot 10^{17} A \left(\frac{\epsilon}{10^{-3} \text{ eV}}\right)^{-1} \text{eV}$$

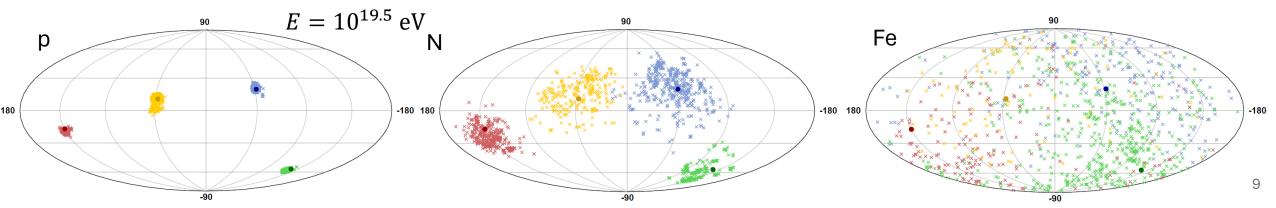
- **Photodisintegration** changes both energy and mass composition of cosmic rays, main energy loss process for heavier nuclei
- Nuclear decay, cosmological redshift, interactions with matter ...

Propagation in the Universe: Deflections in magnetic fields

- Cosmic rays are charged trajectories influenced by magnetic fields in the universe -
 - Extragalactic magnetic fields are not known in large detail weak but long trajectories
 - Galactic magnetic field better mapped, strength few tens of μG

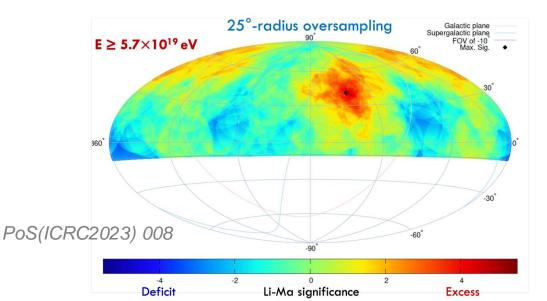


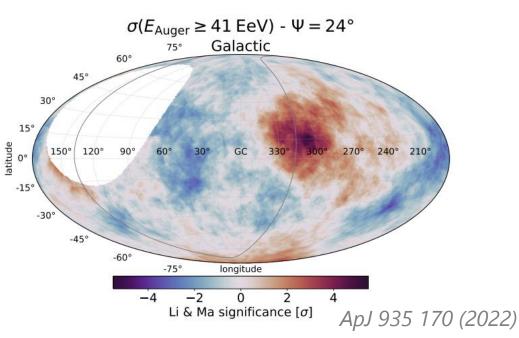
180


To track cosmci rays back to their sources we need high energy light particles!

Propagation in the Universe: Deflections in magnetic fields

- Cosmic rays are cha fields in the universe
 - Extragalactic magn long trajectories
 - Galactic magnetic


To track cosmic rays back to their sources we need high energy light particles!

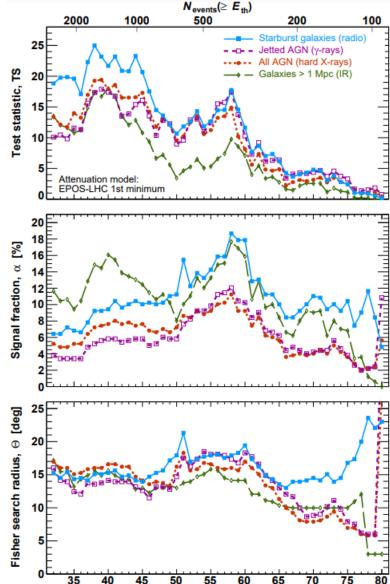


Anisotropies in arrival directions

Blind searches for excesses at the Pierre Auger Observatory

- Largest signal found for E > 41 EeV with tophat smoothing 24° in coordinates (l, b) = $(305.4^{\circ}, 16.2^{\circ})$
- 153 observed events 97.7 expected from isotropy
- Hotspot located 2.9° from NGC 4945 and 5.1° from Centaurus A

Blind searches for excesses at Telescope Array

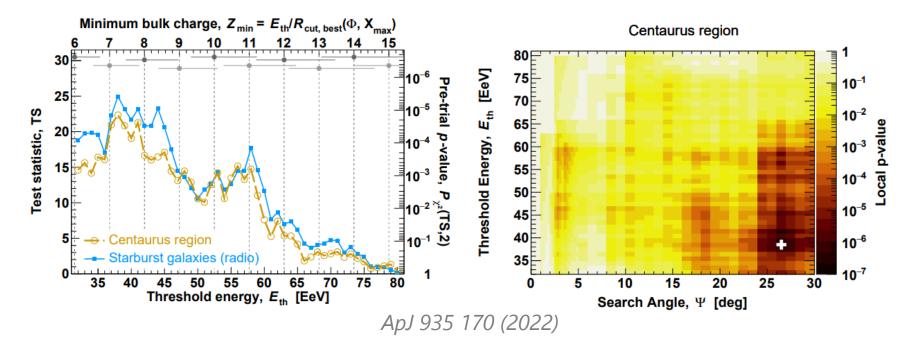

- Hotspot
 - For E > 57 EeV at $(\alpha, \delta) = (144^{\circ}, 40.5^{\circ})$
 - 44 observed events vs. 18 expected from isotropy
- Perseus-Pisces supercluster excess
 - For E > 25 EeV at $(\alpha, \delta) = (17.9^{\circ}, 35.2^{\circ})$

Anisotropies in arrival directions

Correlation with catalogues with the Pierre Auger Observatory data

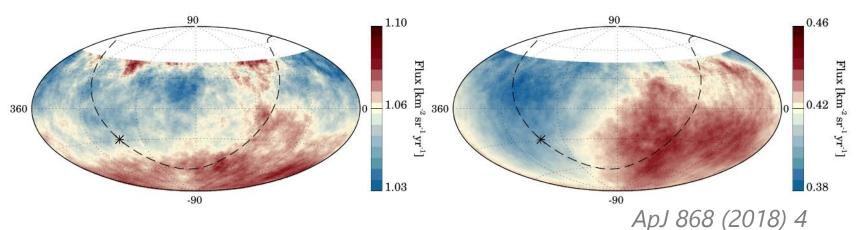
- 2MASS Redshift Survey of near infrared galaxies
- Starburst galaxies
- X-ray AGNs from Swift-BAT catalogue
- γ-ray AGNs from Fermi-LAT catalogue
- \rightarrow 2 peak structure ${\sim}40~\text{EeV}$ and ${\sim}60~\text{EeV}$

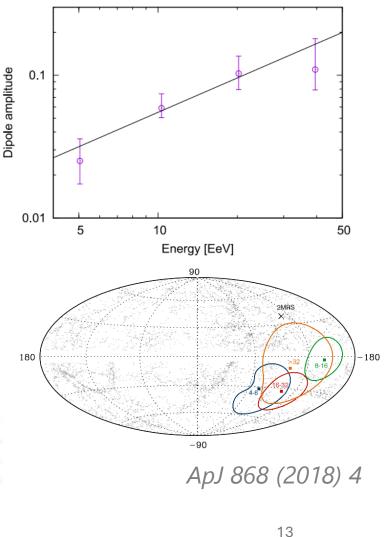
Catalog	$E_{\rm th}~[{\rm EeV}]$	Fisher search radius, $\Theta~[\mathrm{deg}]$	Signal fraction, $\alpha~[\%]$	$\mathrm{TS}_{\mathrm{max}}$	Post-trial p -value
All galaxies (IR)	40	16^{+11}_{-6}	16^{+10}_{-7}	18.0	7.9×10^{-4}
Starbursts (radio)	38	15^{+8}_{-4}	9^{+6}_{-4}	25.0	3.2×10^{-5}
All AGNs (X-rays)	39	16^{+8}_{-5}	7^{+5}_{-3}	19.4	4.2×10^{-4}
Jetted AGNs (γ -rays)	39	14^{+6}_{-4}	6^{+4}_{-3}	17.9	8.3×10^{-4}
All galaxies (IR)	58	14^{+9}_{-5}	18^{+13}_{-10}	9.8	2.9×10^{-2}
Starbursts (radio)	58	18^{+11}_{-6}	19^{+20}_{-9}	17.7	$9.0 imes 10^{-4}$
All AGNs (X-rays)	58	16^{+8}_{-6}	11^{+7}_{-6}	14.9	3.2×10^{-3}
Jetted AGNs (γ -rays)	58	17^{+8}_{-5}	12^{+8}_{-6}	17.4	$1.0 imes 10^{-3}$


Threshold energy, E_{th} [EeV]

ApJ 935 170 (2022)

Anisotropies in arrival directions

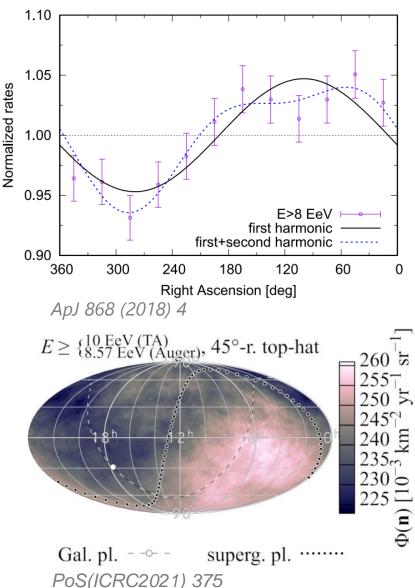

Targeted search – *Centaurus A* region


- Closest radio galaxy to Earth ~3.7 Mpc, NGC 4945, M83
- Enhanced flux in all four studied catalogues
- Energy above 38 EeV and window of 27 $^\circ$
- 215 events observed vs 152 expected from isotropy ightarrow 3.9 σ

Large scale anisotorpies - dipole

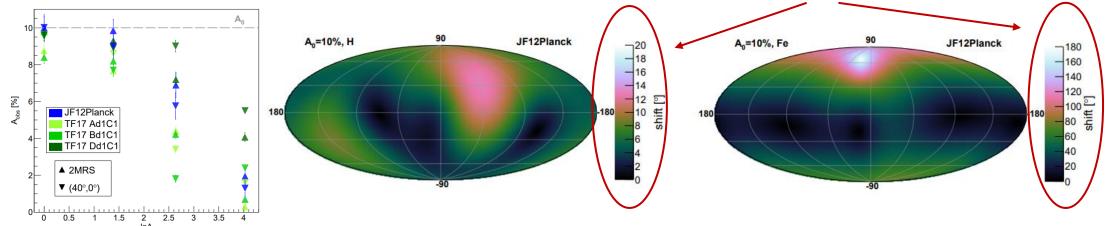
- Dipole in the arrival directions of cosmic rays above 8 EeV
- Points ~125° from the Galactic center suggests an extragalactic origin
- Amplitude 6.5^{+1.3}_{-0.9}%, direction $(l, b) = (233^{\circ}, -13^{\circ})$ and significance over 6σ
- Amplitude evolves with energy

Large scale anisotorpies - dipole


• Arrival directions analyzed for dipole and quadrupole anisotropies – most significant dipole above 8 EeV

$$\phi(\hat{u}) = \frac{\phi_0}{4\pi} (1 + d \cdot \hat{u} + \frac{1}{2} \sum_{i,j} Q_{i,j} u_i u_j)$$

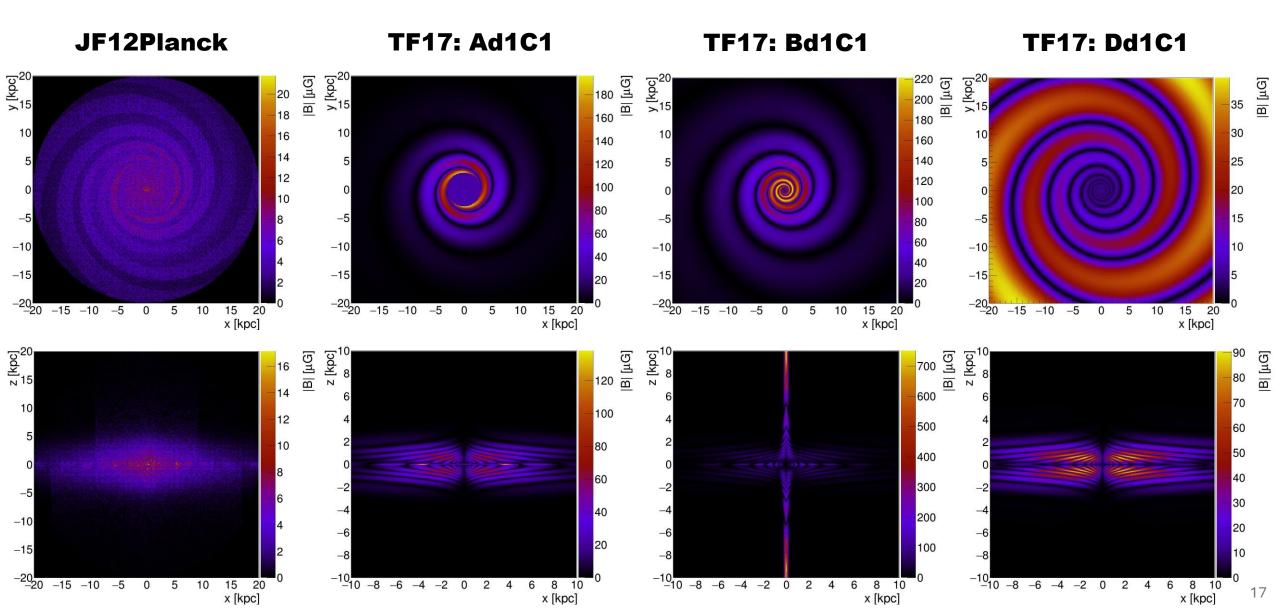
• Joint analysis - Auger and TA


energies (Auger)	[8.57 EeV, 16 EeV)	[16 EeV, 32 EeV)	[32 EeV, +∞)			
energies (TA)	[10 EeV, 19.47 EeV)	[19.47 EeV, 40.8 EeV)	[40.8 EeV, +∞)			
d_x [%]	$-0.7 \pm 1.1 \pm 0.0$	$+1.6 \pm 2.0 \pm 0.0$	$-5.3 \pm 3.9 \pm 0.1$			
d_y [%]	$+4.8 \pm 1.1 \pm 0.0$	$+3.9 \pm 1.9 \pm 0.1$	$+9.7 \pm 3.7 \pm 0.0$			
d_z [%]	$-3.3 \pm 1.4 \pm 1.3$	$-6.0 \pm 2.4 \pm 1.3$	$+3.4 \pm 4.7 \pm 3.6$			
$Q_{xx} - Q_{yy}$ [%]	$-5.1 \pm 4.8 \pm 0.0$	$+13.6 \pm 8.3 \pm 0.0$	$+43 \pm 16 \pm 0$			
Q_{xz} [%]	$-3.9 \pm 2.9 \pm 0.1$	$+5.4 \pm 5.1 \pm 0.0$	$+5 \pm 11 \pm 0$			
Q_{yz} [%]	$-4.9 \pm 2.9 \pm 0.0$	$-9.6\pm5.0\pm0.1$	$+11.9 \pm 9.8 \pm 0.2$			
Q_{zz} [%]	$+0.5 \pm 3.3 \pm 1.7$	$+5.2 \pm 5.8 \pm 1.7$	$+20 \pm 11 \pm 5$			
Q_{xy} [%]	$+2.2 \pm 2.4 \pm 0.0$	$+0.2 \pm 4.2 \pm 0.1$	$+4.5 \pm 8.1 \pm 0.1$			
$C_1 [10^{-3}]$	$4.8 \pm 2.0 \pm 1.2$	$7.6\pm4.6\pm2.2$	$19 \pm 12 \pm 4$			
$C_2 [10^{-3}]$	$0.85 \pm 0.66 \pm 0.02$	$3.1\pm2.2\pm0.2$	$15.5\pm8.9\pm2.4$			

PoS(ICRC2021) 395 375

Influence of the Galactic magnetic field

- Cosmic rays are charged particles → trajectories are deflected in Galactic magnetic field (GMF) and extragalactic magnetic field (EGMF)
- Deflections depend on particle energy E and charge $Z \rightarrow rigidity R = E/Z$

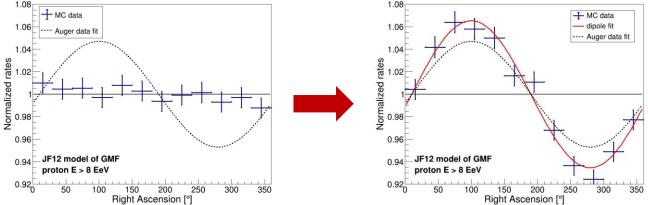

• GMF can change the direction of the dipole and also its amplitude

What can we say about the UHECR dipole before cosmic rays enter the Galactic magnetic field? A. Bakalová *et al* JCAP12(2023)016

Simulations of cosmic ray propagation

- Isotropic flux of cosmic rays propagated in the GMF using multiple models of GMF used
 - JF12Planck model of GMF
 - In order to include uncertainties of the field different coherence lengths of the turbulent component used: 30 pc, 60 pc and 100 pc
 - TF17 model of GMF
 - Three options of the field used: Ad1C1, Bd1C1, Dd1C1
 - Results checked with field strength adjusted by $\pm 10\%$
- Four types of primary particles simulated separately: p, He, N, Fe
- Power law energy spectrum with spectral index $\gamma = 3$, energy range (8 100) EeV
- EGMF and energy losses neglected

Models of GMF


Imposing dipole into the simulated flux

 Simulated particles reweighted according to their original direction on the edge of the Galaxy by

 $w = A_0 \cos \delta + 1$

- δ angular distance from the direction of the dipole A_0 extragalactic amplitude as a percentage of the relative excess with respect to the mean flux
- Dipole injected to all different combinations of galactic longitude and latitude with step of 1° using various amplitudes A_0 in discrete steps from 6.5 % up to 20 %

 \rightarrow total of 518,400 combinations for each element

• Mass compositions explored by combining the four elements with a step of 5%

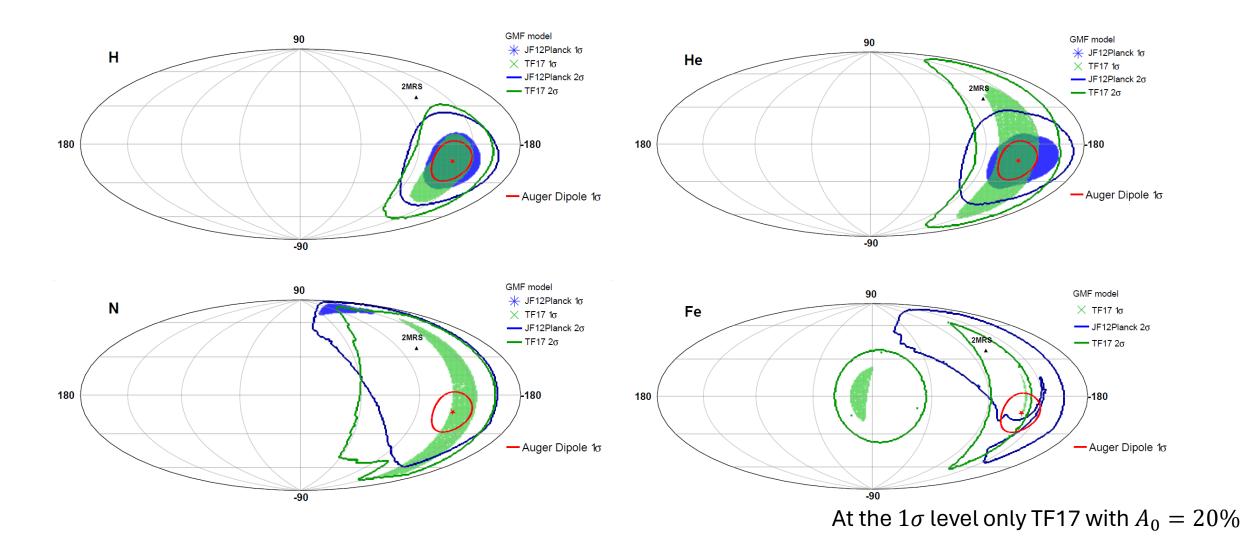
ightarrow 1,771 combinations for the mass composition mixes

Reconstruction of the dipole

Dipole with unit vector pointing in the direction of the dipole *D* and amplitude *A*

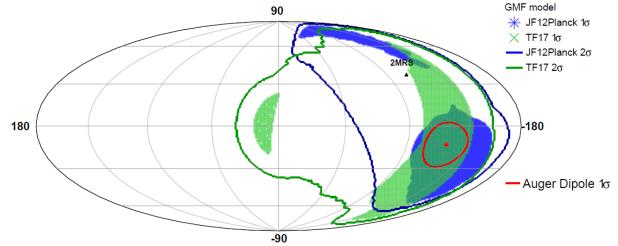
$$\Phi(\boldsymbol{u}) = \frac{\Phi_0}{4\pi} (1 + A\boldsymbol{D} \cdot \boldsymbol{u})$$

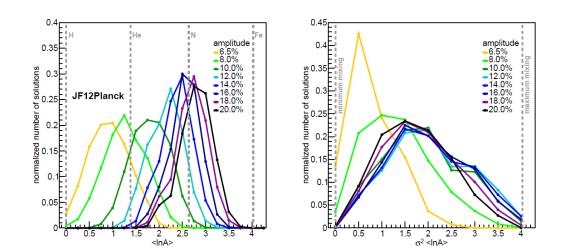
• Zeroth and first moments of the flux

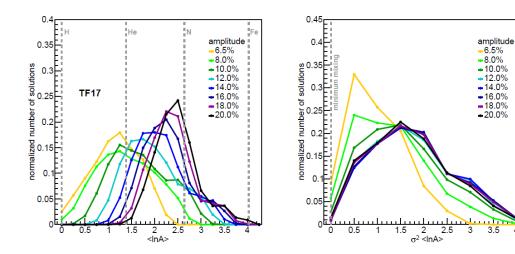

$$I_0 = \int \Phi(\boldsymbol{u}) \mathrm{d}\Omega \,, \qquad \boldsymbol{I} = \int \boldsymbol{u} \Phi(\boldsymbol{u}) \mathrm{d}\Omega$$

• We can obtain **dipole amplitude** and **dipole direction** on the observer using discrete versions of these integrals

$$S_0 = \sum_k \frac{1}{w_k}, \qquad S = \sum_k \frac{u_k}{w_k} \qquad \longrightarrow \qquad A = \frac{3||S||}{S_0}, \qquad D = \frac{S}{||S||}$$

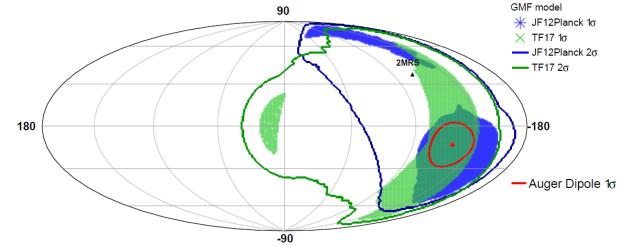

Looking for parameters of the extragalactic dipole (A_0 , D_0) that are compatible after the propagation with the measurements of the Pierre Auger Observatory at the 1 σ and 2 σ level.

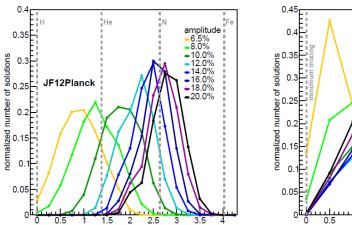

Results for single element scenario

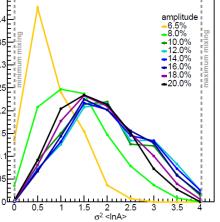


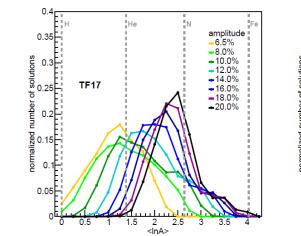
Results for mixed mass composition

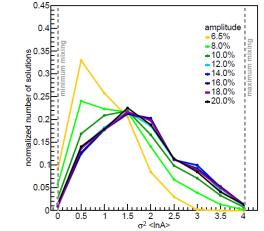
- JF12Planck two groups of solutions at the 1σ level
 - 1. Within $\approx 45^{\circ}$ from the measured dipole
 - 2. Up to $\approx 105^{\circ}$ from the measured dipole nitrogen-dominated composition



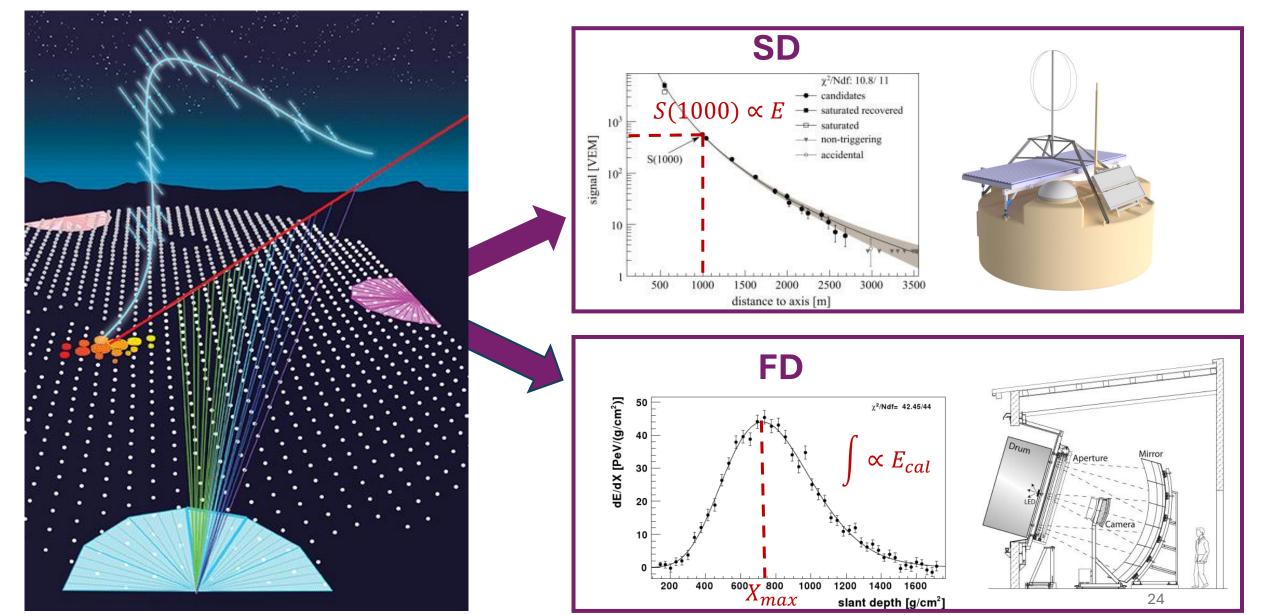



Results for mixed mass composition


- TF17 two groups of solutions at the 1σ level
 - 1. Narrow band of longitudes but a wide range of latitude, within $\approx 80^{\circ}$ from measured dipole
 - 2. Close to the Galactic center solutions for pure iron nuclei TF17 Bd1C1 NOT IN CONTRADICTION WITH



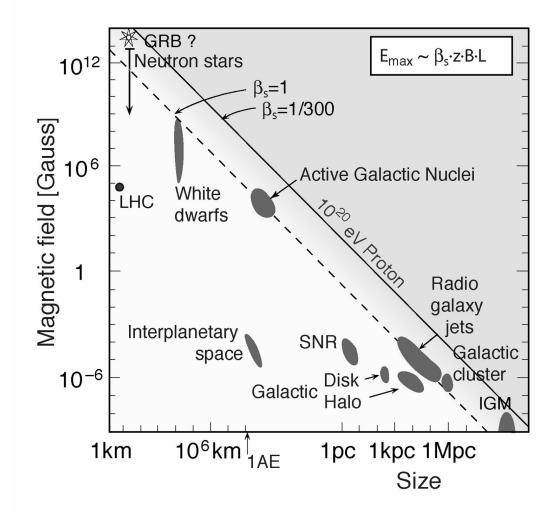
<InA>


EXTRAGALCTIC ORIGIN

Summary

- Light high energy particles are needed for cosmic ray astronomy
 - Current measurements show cosmic rays are getting heavier at highest energies new upgraded observatories can help in better identification of the mass of primary particles
- Intermediate scale anisotropies seen in data of the Pierre Auger Obsrvatory and Telescope Array possible clustering around prominent sources?
- Dipole anisotropy in arrival directions
 - Extragalactic origin
 - Anisotropic distribution of sources
 - Dipole outside the Galaxy can have very different direction and amplitude depending on the mass composition above 8 EeV
 - + 2MRS dipole direction compatible with the Auger dipole at the 2σ
- Upgraded observatories will provide new and better data
- New models of magnetic fields can help tracking particles back to their origin

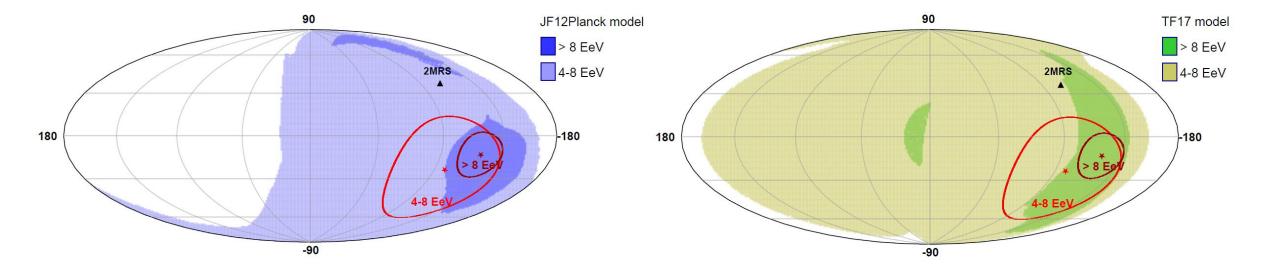
Pierre Auger Observatory



Energy spectrum E [eV] 10¹⁶ 10¹⁷ 10¹⁸ 10¹⁹ 10²⁰ E³ [eV² km⁻² sr¹ yr¹] preliminary 10³⁸ 10³⁷ Auger combined ···· fit 19.5 20 20.5 16 16.5 17.5 18 18.5 19 17 log₁₀(E/eV)

Accelerating cosmic rays

$$E_{max} = ZqBR_s$$


$$E_{max} = \varepsilon Z q B R_s$$
$$\varepsilon < 1$$

Dipole in lower energy bin 4-8 EeV

• Measured dipole in energy bin (4 - 8) EeV is not significant (< 3σ)

amplitude $2.5^{+1.0}_{-0.7}$ % direction $\alpha = (80 \pm 60)^{\circ}, \delta = (-24^{+12}_{-13})^{\circ}$

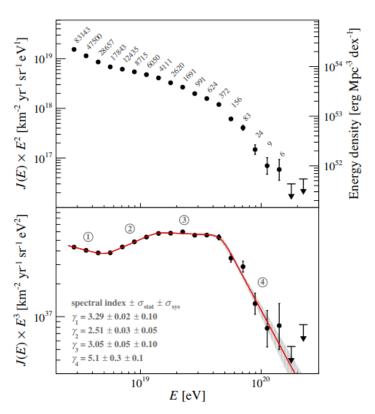
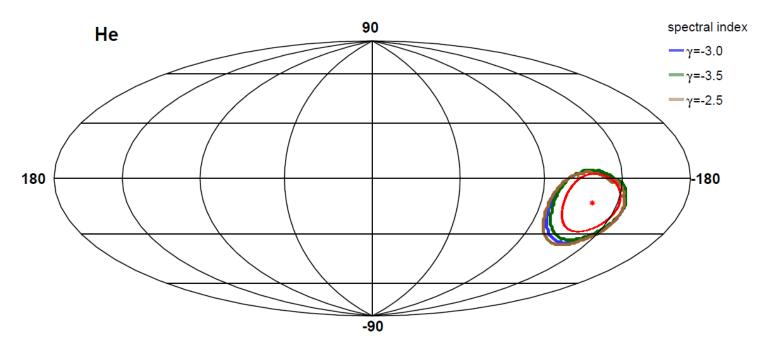
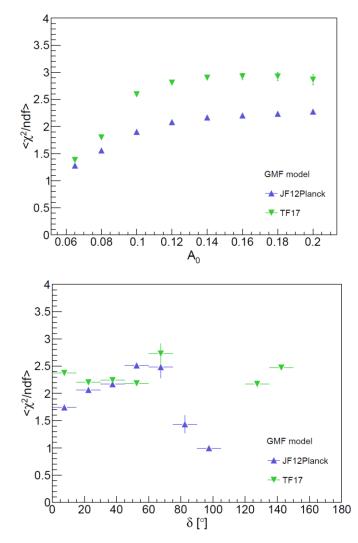



TABLE I. Spectral parameters in three different declination ranges. The energies E_{12} , E_{23} , and E_{34} are given in units of 10^{18} eV and the normalization parameter J_0 in units of 10^{18} km⁻² sr⁻¹ yr⁻¹ eV⁻¹. Uncertainties are statistical.

	[-90.0°, -42.5°]	[-42.5°, -17.3°]	[-17.3°, +24.8°]
J_0	1.329 ± 0.007	1.306 ± 0.007	1.312 ± 0.006
γ1	3.26 ± 0.03	3.31 ± 0.03	3.30 ± 0.03
γ2	2.53 ± 0.04	2.54 ± 0.04	2.44 ± 0.05
γ3	3.1 ± 0.1	3.0 ± 0.1	3.0 ± 0.1
γ4	5.2 ± 0.4	4.4 ± 0.3	5.7 ± 0.6
E_{12}	5.1 ± 0.2	4.9 ± 0.2	5.2 ± 0.2
E_{23}	14 ± 2	14 ± 2	12 ± 1
E_{34}	47 ± 4	37 ± 4	51 ± 4


Spectral index

- All results obtained for spectral index -3 constant for the whole energy range – in reality the spectral index changes
- Results checked for spectral index -2.5 and -3.5 → small deviations of the resulting areas of allowed extragalactic directions of the dipole ~3°

χ^2 checks in right ascension

- All solutions found for three dimensional dipole also checked in the distribution of arrival directions in the right ascension
- Fitted with dipole and dipole+quadrupole behavior
 - No significant quadrupole amplitudes
- Slight evolution of χ^2 with initial amplitude
- No significant evolutions of χ^2 with distance to measured dipole

