Physics at DUNE

Viktor Pěč

FZU – Institute of Physics of the Czech Academy of Sciences

FZU Division Seminar, May 16, 2024

Outline

- Brief history of neutrino physics
- Neutrino oscillations
- DUNE experiment
- Supernova neutrinos
- Low E calorimetry

Neutrino History

• 1930 Postulated by Pauli

Neutrino's Early History

- 1930 Postulated by Pauli
- 1953-56 Detected by Cowan & Reines
 - Reactor $\overline{\nu}_{e}$
 - Nobel Prize 1995

Neutrino's Early History

- 1930 Postulated by Pauli
- 1953-56 Detected by Cowan & Reines
 - Reactor $\overline{\nu}_{e}$
 - Nobel Prize 1995
- 1962 Neutrino flavours confirmed by Lederman et al.
 - Nobel Prize 1988
 - ν_{μ} (u_{τ} observed in 1975/2000)

FIG. 1. Plan view of AGS neutrino experiment.

Neutrino Oscillations Era

- 1960s Solar neutrino detection
 - Homestake
 - Solar neutrino problem 1/3 $\nu_{\rm e}$ observed
 - Nobel Prize in 2002 (after problem resolved)

Neutrino Oscillations Era

Oscillations

- 1957 proposed by Pontecorvo
- 1978 Wolfenstein, 1985 Mikheyev-Sirmonov
 - Proposed matter effect (called MSW)
- 1998 SuperKamiokande, 2001 SNO
 - Observed oscillation effects
 - Nobel Prize 2015

Neutrino Mixing

 Eigenstates
$$U_{\alpha i} = \langle \nu_{\alpha} | \nu_i \rangle$$

Pontecorvo–Maki–Nakagawa–Sakata matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & C_{23} & S_{23} \\ 0 & -S_{23} & C_{23} \end{pmatrix} \begin{pmatrix} C_{13} & 0 & \hat{S}_{13}^* \\ 0 & 1 & 0 \\ -\hat{S}_{13} & 0 & C_{13} \end{pmatrix} \begin{pmatrix} C_{12} & S_{12} & 0 \\ -S_{12} & C_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\Phi_1} \\ e^{i\Phi_2} \\ 0 & 0 & 1 \end{pmatrix}$$
$$C_{jk} = \cos \theta_{jk}, \ S_{jk} = \sin \theta_{jk}, \ \hat{S}_{13} = e^{i\delta_{\rm CP}} \sin \theta_{13}$$

Oscillation in Vacuum

$$egin{aligned} P_{lpha o eta} &= \delta_{lphaeta} - 4\,\sum_{j>k}\,\mathcal{R}_e\Big\{\,U^*_{lpha j}\,U_{eta j}\,U_{lpha k}\,U^*_{eta k}\,\Big\}\,\sin^2\!\left(rac{\Delta_{jk}m^2\,L}{4E}
ight) \ &+ 2\,\sum_{j>k}\,\mathcal{I}_m\Big\{\,U^*_{lpha j}\,U_{eta j}\,U_{lpha k}\,U^*_{eta k}\,\Big\}\,\sin\!\left(\!rac{\Delta_{jk}m^2\,L}{2E}
ight) \,, \end{aligned}$$

Oscillation parameters

Parameter	Value	Precision
Δm ₂₁ ²	7.53×10 ⁻⁵ eV ²	2.4%
$ \Delta m_{32}^2 \simeq \Delta m_{31}^2 $	2.45×10 ⁻³ eV ²	1.4%
θ ₁₂	33°	4.2%
θ ₂₃	47°	3.8%
θ ₁₃	9°	2.8%
δ _{CP}	?	

Neutrino Mass

Neutrino Mass

Missing – "Known Unknowns"

- $\theta_{23} \gtrless 45^\circ$ **DUNE**, HyperK
- Mass ordering JUNO, **DUNE**, HyperK
- Absolute mass KATRIN
- Is neutrino Majorana or Dirac particle? searches for $0\nu\beta\beta$
- CP violation and value of δ_{CP} DUNE, HyperK

NOvA (USA) and T2K (Jpn)

M.Sanchez, Moriond 2024

Deep Underground Neutrino Experiment

- Goal: precise measurement of neutrino oscillation parameters
- From oscillations of accelerator neutrinos over a long baseline

Near Detector Site

Far Detector Site

Former gold mines in South Dakota

Far Detector Site

23

Cryostat

Liquid Argon TPC – LArTPC

charge

UVX V wire plane waveforms Liquid Argon TPC **Charged Particles** 3D images from drifted >⊖ Cathode Plane Scintillation light collected by photon detection system \rightarrow time to anchor in drift direction Edrift t X wire plane waveforms

Sense Wires

 1st detector expected running in about 6 years

CP violation

CP Violation Sensitivity

CP violation

Precision measurement: Δm_{32}^2 - mass ordering, θ_{23} - octant

30

CP violation

Precision measurement: Δm_{32}^2 - mass ordering, θ_{23} - octant

Non-beam physics

- BSM nucleon transitions: Proton decay, n-n transition
- Low energy neutrinos: Supernova, Solar

Core-collapse Supernova

- I am not an expert 😁
- One possible end of a star
- Critical mass of Fe core ~ 1.4 M_{\odot}
- Core collapse
- Rebound in ~10⁻² s
- Release of energy in ν and $\overline{\nu}$
 - About 10^{53} ergs in 10^{58} neutrinos @ ~ 10 MeV
 - Small part (~1%) transformed to visible explosion

Layers not to scale, source: Wikipedia.org

Phases

Garching model

- Infall ν_e
- Neutronization ν_e , e⁻ + p -> ν_e + n
- Accretion outer mass falls onto the core
- Cooling most energy in ~10 s

Energy Spectrum

- Dependent on models
- Measuring spectrum vs time would help constraining
- Expect ~1000 $\nu_{\rm e}$ events from 10 kpc (Milky Way centre)
- But very rare once every few decades within ~20 kpc

34

Low-E Calorimetry

- TPC charge signal \rightarrow energy
- DUNE designed for ~1 GeV
- Improvements at ~10 MeV?

LArIAT

40 cm

90 cm

Phys. Rev. D **101**, 012010 (2020) 36

Observation of Scintillation Light

Michel Electrons from Cosmic Ray Muons

Michel Electron in PMT Signal

Spectrum from Charge Light

ProtoDUNE

CERN North Area

Michel electrons at ProtoDUNE

- First data from 2018/19
- Successful measurement of ME energy spectrum using just TPC charge

Light collection

• Large area light collectors

Light collection

- Large area light collectors
- Multi-layered design

Light collection

- Large area light collectors
- Multi-layered design
- Photons converted to lower wavelengths and trapped!

Challenges

- Large volume = long distance for light = attenuation and scattering
- Slow component in scintillation light ~2 μs
- Electronics relaxation time $\sim 0.5 \ \mu s$

Summary

DUNE

- Will play major role in determination of CP violation in leptons
- Prepares for SN events
- Will come online around 2030
- I am working on combined calorimetry in ProtoDUNE

Backup

DUNE Collaboration

1,400+ people from
 200+ institutions in 30+ countries

DUNE Collaboration meeting at CERN, 2020

θ_{23} Octant Sensitivity

Supernova Neutrino Interaction in DUNE

