

Highlights from the Pierre Auger Observatory

Alexey Yushkov*

*FZU — Institute of Physics of the Czech Academy of Sciences The Pierre Auger Collaboration, Av. San Martín Norte 304, 5613 Malargüe, Argentina

http://www.auger.org

FZU Division seminar, 30/05/2024

Pierre Auger Collaboration

Alexey Yushkov

Energy range of the Pierre Auger Observatory

The ultimate goal: discover cosmic-ray sources

Essential inputs	
Arrival directions	
◊ Energy spectrum	
♦ Mass composition	

or detect photons and/or neutrinos!

Alexey Yushkov

Detection of extensive air showers: hybrid detector

Alexey Yushkov

Pierre Auger Observatory

5

24 + 3 fluorescence telescopes

Surface detector (SD) duty cycle 100 %

1660 water-Cherenkov detectors

grid	area	full efficiency $lg(E/eV)$
1500 m	3000 km ²	18.5
750 m	23.5 km ²	17.5
433 m	1.9 km ²	16.5

Alexey Yushkov

Energy estimation: atmosphere as a calorimeter

Fluorescence detector: direct observation of the longitudinal energy deposit

Alexey Yushkov

Energy estimation: atmosphere as a calorimeter

Auger Observatory surface detector

Surface water Cherenkov detectors (SD 'pixels'): lateral energy deposit

Alexey Yushkov

light travels 300 m in 1000 ns: shower disk thickness here is few hundred meters (depends on E, θ, r)

Auger Observatory surface detector

Hybrid events: SD energy calibration using FD

✓ Hadronic-model dependence of the SD energy is strongly reduced: energy spectrum is mostly data-driven ★ Mass composition: X_{max} and [muon] signal in SD stations depend on the accuracy of air-shower simulations

Alexey Yushkov

Best mass composition parameters: number of muons and X_{max}

Difference proton – iron

$$\langle X_{\rm max}^{\rm p} \rangle - \langle X_{\rm max}^{\rm Fe} \rangle \approx (80 - 100) \ {\rm g \, cm^{-2}}$$

in number of muons reaching the ground $\langle N_{\mu}^{\rm Fe}
angle / \langle N_{\mu}^{\rm P}
angle pprox (1.3-1.4)$

in fluctuations of both parameters

shower-to-shower fluctuations proton/iron ≈ 3

UHECR propagation: magnetic fields and charged-particle astronomy

Arrival directions of particles with low rigidity R = E/Z are scrambled by galactic magnetic field

UHECR propagation: magnetic fields and charged-particle astronomy

arrival directions from a single source (\bigstar mark)

Backtracking to sources: do UHECR reach rigidities R > 10 EV?

https://www.nas.nasa.gov/SC14/demos/demo4.html

UHECR propagation: principal energy losses

Photonuclear reactions with extragalactic background light & cosmic microwave background

pion production	$p + \gamma ightarrow \Delta^+ ightarrow p + \pi^0$ $p + \gamma ightarrow \Delta^+ ightarrow n + \pi^+$	horizon $\lesssim 200$ Mpc: anisotropic matter distribution Greisen–Zatsepin–Kuzmin cutoff $E_0 > 5 \times 10^{19}$ eV
photodisintegration Gerasimova-Rozental	${}^{A}Z + \gamma \rightarrow {}^{A-1}Z + n$ cutoff (1961)	Energy cutoff is similar to GZK Secondary nucleon energies $\sim E_0/A$, below GZK Suppressed UHE photon and neutrino fluxes
pair production	$p + \gamma \rightarrow p + e^+ + e^-$	important above $2 \times 10^{18} \text{ eV}$

Energy spectrum — mass composition around 2010: the encouraging model

The dip model (V. Berezinsky et al.)

On astrophysical solution to UHECRs Phys. Rev. D74 (2006) 043005 Mass composition: proton-dominated Dip in spectrum: pair production Cutoff energy matches GZK Predictions ♦ Detectable neutral particle fluxes \diamond Particle astronomy with *R* \sim 100 EV

Energy spectrum — mass composition around 2010: the encouraging model

The dip model (V. Berezinsky et al.)

On astrophysical solution to UHECRs Phys. Rev. D74 (2006) 043005

- \checkmark Mass composition: proton-dominated
- ✓ Dip in spectrum: pair production
- ✓ Cutoff energy matches GZK

Predictions

- ◊ Detectable neutral particle fluxes
- \diamond Particle astronomy with $R \sim 100 \; \mathrm{EV}$

Energy spectrum — mass composition around 2010: the encouraging model

The dip model (V. Berezinsky et al.)

On astrophysical solution to UHECRs Phys. Rev. D74 (2006) 043005 ✓ Mass composition: proton-dominated Dip in spectrum: pair production Cutoff energy matches GZK Predictions ♦ Detectable neutral particle fluxes \diamond Particle astronomy with $R \sim 100 \text{ EV}$

Alert: "There is a dramatic conflict between recent observational data of two largest UHECR detectors: HiRes and Auger"

Astropart. Physics 34 (2011) 620; 39-40 (2012) 129

Auger as a game changer

The disappointing model (R. Aloisio, V. Berezinsky, A. Gazizov)

Astropart. Physics 34 (2011) 620

- \diamond Rigidity-dependent cutoff $(4 10) \times Z$ EeV
- \diamond Peters' cycle: successive domination of hydrogen, helium, CNO, iron at energies $\propto Z$
- \diamond Maximum energy for iron (Z = 26) is (100 300) EeV
- \diamond Energy per nucleon is (2-5) EeV, almost no photonuclear reactions on CMB
- No GZK cutoff and cosmogenic neutrinos
- \diamond Spectrum suppression: maximum source energy and nuclei photodisintegration

Around 100 EeV iron nuclei dominate, correlation to sources is poor (if any)

Auger as a game changer

Auger energy spectrum

instep — new and unexpected

5 spectral features

$$E_{01} = (2.8 \pm 0.3 \pm 0.4) \times 10^{16} \text{ eV}$$

$$E_{12} = (1.58 \pm 0.05 \pm 0.2) \times 10^{17} \text{ eV}$$

$$E_{23} = (5.0 \pm 0.1 \pm 0.8) \times 10^{18} \text{ eV}$$

$$E_{34} = (1.4 \pm 0.1 \pm 0.2) \times 10^{19} \text{ eV}$$

$$E_{45} = (4.7 \pm 0.3 \pm 0.6) \times 10^{19} \text{ eV}$$

PoS (ICRC2021) 324

Mass composition is the key

PRL 125 (2020) 121106, PRD 102 (2020) 062005, Eur. Phys. J. C 81 (2021) 966

Alexey Yushkov

Energy evolution of mean and standard deviation of X_{max}

Break in $\langle X_{\max} \rangle$, $\sigma(X_{\max})$ at 2 EeV (10^{18.3} eV): trend towards heavier masses

but hardening in the all-particle spectrum ('ankle') is at 5 EeV

Energy evolution of mean and standard deviation of X_{max}

Similar trend for E > 2 EeV in other experimental data

Alexey Yushkov

Astropart. Phys. 149 (2023) 102819

X_{max} measurements at Auger and Telescope Array

Individual nuclei: fits of X_{max} distributions with (p, He, N, Fe) templates

Highlights from the Pierre Auger Observatory

Alexey Yushkov

27

PRD 90 (2014) 122006, PoS(ICRC2017)506

PoS(ICRC2019)482, PoS(ICRC2023)249

Fractions of primary nuclei: evolution with energy

2nd knee ($\sim 10^{17}$ eV) ◊ decreasing iron contribution ◊ consistent with the 'iron knee' ankle (10^{18.7} eV) ♦ disappearance of protons highest energies (cutoff) Medium mass domination
 maximum energy in sources? propagation effects?

More data beyond cutoff are needed

Alexey Yushkov

X_{max} up to 10^{20} eV with machine learning and SD data

DNNs using SD traces and geometry: possible new breaks in $\langle X_{max} \rangle$

Alexey Yushkov

Breaks in $\langle X_{max} \rangle$ and energy spectrum

◊ three ⟨X_{max}⟩ breaks above 'ankle': significance ≈ 3σ
 presence of all 3 breaks to be confirmed yet
 ◊ breaks in ⟨X_{max}⟩ and spectrum do not need to coincide

 $\langle X_{\rm max} \rangle$ break at 2 EeV can be associated with 'ankle' at 5 EeV

 \diamond proximity of features can be accidental

due to their density

Alexey Yushkov

Uncertainties in the mass composition and hadronic models

Offset \approx 30 g cm⁻² between SD (DNN) and FD X_{max}

Might be caused by problems in simulations of the muon air-shower component

Uncertainties in the mass composition and hadronic models

Negative $\ln A$ variation for QGSJet-II.04: predicted $\langle X_{max} \rangle$ for this model is too shallow

How good are other predictions? Can we find the scales of X_{max} and muon shower content using the data?

Alexey Yushkov

PoS (ICRC2023) 278, to be submitted to PRD and PRI

X_{max} and muon scales: best fit of the Auger hybrid (SD + FD) data

Alexey Yushkov

Alexey Yushkov

Highlights from the Pierre Auger Observatory

X_{max} and muon scales of hadronic models for the best data fits

All hadronic models fit data best with

 $\diamond~X_{\rm max}$ scales shifted 20 g cm $^{-2}$ to 50 g cm $^{-2}$ deeper

 \diamond Muon scales increased by 15% - 25%

Time to face the consequence $\ddagger \ddagger \ddagger$

Good: more consistent mass composition inferences

Not so good: heavy (\sim iron) composition beyond 50 EeV

X_{max} and muon scales of hadronic models for the best data fits

All hadronic models fit data best with

 $\diamond~X_{\rm max}$ scales shifted 20 g cm $^{-2}$ to 50 g cm $^{-2}$ deeper

 \diamond Muon scales increased by 15% - 25%

Time to face the consequence ###

Good: more consistent mass composition inferences

Not so good: heavy (\sim iron) composition beyond 50 EeV

Auger as a game changer: continuing through the list

The disappointing model (R. Aloisio, V. Berezinsky, A. Gazizov)

Astropart. Physics 34 (2011) 620

- \diamond Rigidity-dependent cutoff $(4 10) \times Z$ EeV
- \diamond Peters' cycle: successive domination of hydrogen, helium, CNO, iron at energies $\propto Z$
- \diamond Maximum energy for iron (Z = 26) is (100 300) EeV
- \diamond Energy per nucleon is (2-5) EeV, almost no photonuclear reactions on CMB
- No GZK cutoff and cosmogenic neutrinos
- \diamond Spectrum suppression: maximum source energy and nuclei photodisintegration
- Around 100 EeV iron nuclei dominate, correlation to sources is poor (if any)

Photon searches using SD 1500 m

SD observables

Lateral distribution of WCD signals

Spread in time of the shower front

γ -induced showers: deeper X_{max} , lower muon content

Background: proton-induced showers

No photon excess with respect to background

Sensitivity is close to pure-proton scenarios

JCAP 05 (2023) 021

Summary of photon searches

No unambiguously identified photons

- \diamond Best photon limits for $E>2\times10^{17}~{\rm eV}$
- \diamond Earlier super-heavy dark matter models are strongly constrained by Auger limits
- Significant increase of exposure needed to constrain GZK proton scenarios

Search for photons $E > 10^{19}$ eV from GW events No candidates in coincidence with GW Main problems Horizon of photons is few Mpc Overwhelming hadronic background ApJ 952 (2023) 91

photon searches at Auger: ApJ 789 (2014) 160; JCAP 04 (2017) 009; ApJL 837 (2017) L25; PoS (ICRC2021) 373; ApJ 933 (2022) 125; JCAP 05 (2023) 021, PoS (ICRC 2023) 1488

Alexey Yushkov

Cosmological implications of photon-flux upper limits at ultrahigh energies in scenarios of Planckian-interacting massive particles for dark matter

PHYSICAL REVIEW LETTERS 130, 061001 (2023)

Limits to Gauge Coupling in the Dark Sector Set by the Nonobservation of Instanton-Induced Decay of Super-Heavy Dark Matter in the Pierre Auger Observatory Data

PHYSICAL REVIEW D 109, L081101 (2024)

Constraints on metastable superheavy dark matter coupled to sterile neutrinos with the Pierre Auger Observatory

Neutrino searches

Earth-skimming ν_{τ} : (90°;95°) Down-going (60°;75°), (75°;90°)

Search for young showers with a large EM contribution

neutrino searches at Auger: JCAP 01 (2016) 037, PRD 94 (2016) 122007, ApJ Lett. 850 (2017) L35, JCAP 10 (2019) 022, 11 (2019) 004; ApJ 902 (2020) 105

Alexey Yushkov

Neutrino searches

No candidates: constraints on proton-dominated astrophysical models and source evolution

Alexey Yushkov

Follow-ups of astrophysical transients

Energy range of Auger $E_{\nu} > 10^{17} \text{ eV}$

Zenith angle of optical counterpart within ± 500 s (90.4°; 93.3°), Earth-skimming Search results no candidates in time windows ± 500 s, ± 14 days

no candidates from all LIGO-Virgo GWs: limits on isotropic neutrino luminosity (24h follow-ups)

GW follow-up searches: PoS (ICRC2021) 968, PoS (ICRC2023) 1488

Alexey Yushkov

UHECR correlation (Auger E > 52 EeV) with IceCube and ANTARES neutrinos

No significant correlation observed

UHECR horizon is limited (200 Mpc), unlike for neutrinos

If sources are transient: UHECR in 2 nG EGMF from 50 Mpc distance is delayed by 10⁵ yr

Propagation in GMF can already cause a delay of two decades

For heavy UHECR correlation to their sources is not preserved

[Tom Gauld, Department of mind-blowing theories, Canongate Books, 2020] Highlights from the Pierre Auger Observatory

Modulation in flux of ultrahigh energy cosmic rays with $E \ge 8$ EeV

Extragalactic origin of UHECRs: dipole for $E \ge 8$ EeV

- ♦ Dipole for $E \ge 8$ EeV: amplitude $d = (7.3^{+1.1}_{-0.9})$ %, at 6.6 σ from isotropy
- \diamond Phase in R.A. $\alpha_d=95^\circ\pm8^\circ$ is nearly opposite to the Galactic center $\alpha_{GC}=-94^\circ$

 \diamond Magnitude and direction of dipole support extragalactic origin of UHECRs with E > 4 EeV

Alexey Yushkov

Observation of large-scale anisotropy for $E \ge 8$ EeV

Alexey Yushkov

Highlights from the Pierre Auger Observatory

Source candidates

Hillas plot: characteristic sizes and magnetic field strength of various classes of sources

Anisotropies tested against catalogues of astrophysical objects

Starburst galaxies

Significance 4.2 σ , E > 38 EeV

$\gamma \mathsf{AGNs}$

Significance 3.3 σ , E > 39 EeV

starburst galaxies

Starburst galaxies (radio) - expected $\Phi(E_{Auger} > 38 \text{ EeV}) \text{ [km^{-2} sr^{-1} yr^{-1}]}$

6.25

ApJL 853 (2018) L29; PoS (ICRC2021) 307; ApJ 935 (2022) 170 Highlights from the Pierre Auger Observatory

Astrophysical model for combined spectrum-mass composition fit

sources: low & high energy extragalactic populations, identical in each population, no evolution

distribution: uniform, except for local overdensity < 30 Mpc

```
injected nuclei: <sup>1</sup>H, <sup>4</sup>He, <sup>14</sup>N, <sup>28</sup>Si, <sup>56</sup>Fe
```

```
cutoff: rigidity (R = E/Z) dependent
```

```
cosmic photon background: CMB, extragalactic background light
```

```
energy losses: adiabatic, e^+ - e^- and photo-meson production, photo-disintegration
```

extragalactic magnetic fields: no interaction (1D propagation)

```
propagation software: SimProp
```

```
energy range: E > 10^{17.8} eV
```

interactions in atmosphere: EPOS-LHC, QGSJetII-04, Sybill 2.3d

```
data to fit: SD spectrum, FD X<sub>max</sub> distributions
```

fit results are very sensitive to variations in input assumptions and experimental uncertainties

Astrophysical model for combined spectrum-composition fit

composition at source (example): $f_{\text{He}} = 29\%$, $f_{\text{N}} = 69\%$, $f_{\text{Fe}} = 2\%$ low rigidity cutoff $lg(R/V) = 18.16 \pm 0.01$ 1038 at the Earth 0 $| \cdot E^3 (eV^2 \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1})$ 0.8 Instep Relative abundances Combined effect from He and N 10³⁷ Fe Galactic-extragalactic 18.0 18.5 19.0 19.5 20.0 18.0 18.5 19.0 19.5 20.0 transition and cutoff nature log₁₀(E/eV) log₁₀(E/eV) He 800 mass composition for respective 790 E 780 energies should be added $[\mathrm{g\,cm}^{-2}]$ $\langle X_{max} \rangle [g cm^{-2}]$ $\langle X_{max} \rangle [g cm^{-2}]$ $\langle 0.22 \$ $\sigma(X_{max})$ 720 25 710 21 700 180 185 19.0 19.5 20.0 18.0 185 19.0 19.5 20.0 $\log_{10}(E/eV)$ log (E/eV)

Highlights from the Pierre Auger Observatory

Alexev Yushkov

hard injection spectrum $\gamma = -1.98 \pm 0.10$

Astrophysical model with addition of anisotropic source distributions

Tested catalogs: 26 γ AGN 44 SBG Cen A

Using: distance, flux weight, direction, signal fraction

SBGs and Cen A describe data well

coherent magnetic deflections are not accounted

JCAP01(2024)022

Future: is charged-particle astronomy still possible?

Composition enhanced anisotropy: SD exposure and SD mass tagging required

Future: is charged-particle astronomy still possible?

Composition enhanced anisotropy: SD exposure and SD mass tagging required

Alexey Yushkov

Particle astronomy for mixed composition?

Select low-Z component if there is any. Correct deflections? Restrict analysis to certain sky regions?

arXiv:2311.12120; ApP 149 (2023) 102819

Alexey Yushkov

- For each WCD + new electronics
 - + small PMT
 - + 3.8 m² scintillator detectors
 - + radio antenna
- SD (750 m) of 23.5 km² area + underground muon detectors

Auger Observatory surface detector

AugerPrime: EPJ Web Conf., 210 (2019) 06002; for Telescope Array TA × 4 upgrade see PoS(ICRC2021)012

- For each WCD + new electronics
 - + small PMT
 - + 3.8 m² scintillator detectors
 - + radio antenna
- SD (750 m) of 23.5 km² area + underground muon detectors

- For each WCD + new electronics
 - + small PMT
 - + 3.8 m² scintillator detectors
 - + radio antenna

SD (750 m) of 23.5 km² area + underground muon detectors

Radio Detector

> zenith angles > 65 degrees: complementary to scintillator detectors
 > full separation of EM (RD) and muon (WCD) components

Composition and hadronic interactions physics, enlarged declination range

rugningnts from the merre Auger Observatory

X_{max} measurements with radio detector AERA

PoS(ICRC2021)387, PRD 109 (2024) 022002, PRL 132 (2024) 021001

X_{max} measurements with radio detector AERA

PoS(ICRC2021)387, PRD 109 (2024) 022002, PRL 132 (2024) 021001

Scientific data: next decade

Multihybrid data from AugerPrime

Scientific data: next decade

Better mass composition sensitivity with next generation

multihybrid observations

Scientific data: next decade

- + Reduced systematics in hadronic interaction models
- + Mass composition with SD/SSD and machine learning
- + Composition sensitivity in the flux suppression region
- + Sensitivity to 10% proton fraction in this region (important for GZK photon and neutrino fluxes)
- + Composition enhanced anisotropy studies
- + Search for new phenomena in hadronic interactions
- + Experience and data for the design of the next generation observatories