

ALICE beyond heavy-ion physics Wonderland

Marek Bombara

(Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice)

Fyzikální ústav AV ČR, v. v. i., Praha, 17th June 2024

Large Hadron Collider at CERN

Fig.: https://en.wikipedia.org/wiki/Large_Hadron_Collider

Large Hadron Collider at CERN

ALICE (A Large Ion Collider Experiment) at the LHC

- study pp and p-Pb collisions ST-CE/JLB-hlm 18/04/2003

4

Why do we study heavy-ion collisions?

Baryon chemical potential ($\mu_{\rm B}$) or net baryon density

Fig: http://inspirehep.net/record/1397855/plots

• to explore the QCD matter phase diagram

• unique opportunity to study primordial matter from the Big Bang epoch in the laboratory

Little Bang in ultrarelativistic heavy ion collisions

1. Before collision

2. After collision

4. After hadronization

Partons - common name for gluons, quarks and antiquarks. Hadrons consist of partons (mostly of quarks and antiquarks). Most known hadrons are proton and neutron.

proton at the TeV scale:

Heavy-ion collision in ALICE

example of Pb–Pb collision seen by the ALICE detector

- hadrons created in the collision leave traces in the detector
- traces \rightarrow hadron properties \rightarrow quark-gluon plasma properties
- advantage of the ALICE detector excellent at particle identification down to low momenta + designed to deal with high-multiplicity track environment
- disadvantage of ALICE detector slow main tracking detector \rightarrow not suitable for very rare processes (like top quark or Higgs boson creation)

Heavy-ion collisions analysis

- trillions of particles for the analysis
- enormous and specific demands on hardware and software

ALICE top highlights (subjective selection)

Highest man-made temperature

- temperature 5.5×10^{12} K
- more than ~10⁵ times higher than a temperature in the middle of the Sun
- presumably only hypernovas could produce higher temperature in the recent Universe

Strange hadrons with weak decay:

Weak decays of strange particles are reconstructed and identified in the detector up to very high momenta.

$K^{0}(d\bar{s}), \Lambda(uds), \Xi^{-}(dss), \Omega^{-}(sss)$

Strange hadrons with weak decay:

Strange particle production is obtained by analysing invariant mass distribution of the (assumed) decay products.

Strangeness

 $K^{0}(d\bar{s}), \Lambda(uds), \Xi^{-}(dss), \Omega^{-}(sss)$

Strangeness enhancement

- Originally proposed as a signature of QGP [J. Rafelski, B. Müller, Phys. Rev. Lett. 48 (1982) 1066-1069]
- Production of strange quarks in QGP should be energetically favoured and faster than production in hadron gas
- The signature was confirmed by experiments at SPS, RHIC and LHC

quark-gluon plasma

$$g + g \rightarrow s + \overline{s}$$
$$g + g \rightarrow s + \overline{s}$$
$$q + \overline{q} \rightarrow s + \overline{s}$$

hadron gas

 $p + \pi^- \to \Lambda^0 + K^0$ $\Lambda^0 + \pi^- \to \Xi^- + K^0$ $\Xi^- + \pi^0 \rightarrow \Omega^- + K^0$

 $\Omega^{-}(sss)$

 Ω^{-}

Strangeness enhancement also in pp and p-Pb!

Enhancement hierarchy is determined by number of valence quarks in the hadron!

- strangeness enhancement clearly visible for pp a p–Pb collisions with high multiplicity
- one of the indications that some form of parton matter can be created also in pp collision (there are also models which do not require QGP)

Strangeness enhancement also in pp and p-Pb!

Enhancement hierarchy is determined by number of valence quarks in the hadron!

ALICE Collaboration: Enhanced production of multi-strange hadrons in highmultiplicity proton-proton collisions. Nature Physics 13, 535-539 (2017). https://doi.org/10.1038/nphys4111

- strangeness enhancement clearly visible for pp a p-Pb collisions with high multiplicity
- one of the indications that some form of parton matter can be created also in pp collision (there are also models) which do not require QGP)

ALICE impact in Nuclear Physics: CPT invariance in N-N interactions

- CPT invariance: a fundamental symmetry of the nature: all physics laws are the same when we change at the same time the charge (C), space (P) and time (T). As a consequence: masses of the particles and antiparticles should be the same.
- ALICE: The most precise measurement of the antinuclei masses so far. ALICE took advantage of:
 - matter and antimatter are produced at LHC in equal amounts
 - nuclei and antinuclei are produced in high amounts in heavy ion collisions
 - excellent particle identification for low momenta a strong advantage of ALICE at the LHC

ALICE impact in Nuclear Physics: CPT invariance in N-N interactions

ALICE Collaboration: *Precision measurement of the mass difference between light nuclei and anti-nuclei*. **Nature Physics**, 11, 811–814 (2015). https://doi.org/10.1038/nphys3432

ALICE contribution to Cosmology: complementary measurements for a possible discovery of Dark Matter

Dark Matter (DM)

Matter which contributes to 23% of the total mass-energy of the Universe. It does not interact electromagnetically nor by strong force. Only gravitational observations are available so far.

Dark matter played an important role at Universe evolution -"gravitational skeleton" for the stars and galaxies formation.

Fig.: https://en.wikipedia.org/wiki/Dark_energy

3 ways how to search for DM (if it is in a form of fundamental particles):

- 1. directly, e.g. at LHC (ATLAS and CMS)
- 2. by scattering of DM particles on nuclei
- 3. via annihilation or weak decay of DM particles to ordinary matter particles, as in AMS experiment - one of the promising signatures could be a production of antinuclei, which should be higher than a background production in cosmic rays (ALICE!)

ALICE contribution to Cosmology: complementary measurements for a possible discovery of Dark Matter

Fig.: https://en.wikipedia.org/wiki/Alpha_Magnetic_Spectrometer

ALICE contribution to Cosmology: complementary measurements for a possible discovery of Dark Matter

ALICE contribution: an estimation of antinuclei production in proton-proton collisions (proxy for cosmic ray interactions within the interstellar medium) and an estimation of the cross section of the light antinuclei on nuclei.

ALICE Collaboration: *Measurement of the Low-Energy* Antideuteron Inelastic Cross Section, Physical Review Letters 125, 162001 (2020), doi: 10.1103/ PhysRevLett.125.162001

ALICE Collaboration: *(Anti-)deuteron production in pp collisions at* $\sqrt{s} = 13$ *TeV*, **Eur. Phys. J. C** (2020) 80:889 https://doi.org/10.1140/epjc/s10052-020-8256-4

ALICE impact in Astrophysics: hyperon matter in neutron stars cores

- the state equation for neutron stars depends on cross section knowledge of the nucleons and hyperons (strange baryons)
- cross sections are measured in the scattering experiments
- the scattering experiments can be easily set up with more-or-less stable particles containing up and down quarks (e.g. protons, neutrons or pions)
- the scattering experiments with strange baryons (a. k. a. hyperons - Y) are impossible to realise (due to unstability and very low production)
- femtoscopy a method which can measure the interactions of two particles

Fig.: https://astrobites.org/2014/08/11/peeling-apart-a-neutron-star/

ALICE impact in Astrophysics: hyperon matter in neutron stars cores

Method: particle correlations in momentum space a.k.a. femtoscopy

- source emitting particles interact elastically via strong interaction
- attractive force can indicate possible bound states

$$\frac{S(r^*)}{|\Psi(k^*, r^*)|^2} d^3 r^* = \xi(k^*) \cdot \frac{N_{\text{same}}(k^*)}{N_{\text{mixed}}(k^*)}$$

ALICE impact in Astrophysics: hyperon matter in neutron stars cores

- an exact knowledge about a character of Y-N and Y-Y has important consequences on neutron star physics
- the hyperons in the cores of the neutron stars their existence and amounts depend on interactions with nucleons
- a full exploitation of the method in LHC Run 3 and Run 4

ALICE Collaboration: Unveiling the strong interaction among hadrons at the *LHC*, **Nature** 588, 232–238 (2020). https://doi.org/10.1038/s41586-020-3001-6

Dead cone effect observed - ALICE contribution to QCD

- it is a part of the space (cone), where the gluon bremstrahlung is supressed
- the size of the cone is proportional to mass-overenergy of the quark which emits gluons
- direct experimental observation of the heavy quark mass!

ALICE Collaboration: *Direct observation of the dead-cone effect in quantum chromodynamics*, **Nature** 605, 440–446 (2022). https://doi.org/10.1038/s41586-022-04572-w

24

ALICE version 2.0 - Run 3

ACORDE ALICE Cosmic Ra
AD ALICE Diffractive Detector
DCal Di-jet Calorimeter
EMCal Electromagnetic Cal
HMPID High Momentum Pa Identification Detect
ITS-IB Inner Tracking System
ITS-OB Inner Tracking System
MCH Muon Tracking Cham
MFT Muon Forward Tracker
MID Muon Identifier
PHOS / CPV Photon Spec
TOF Time Of Flight
T0+A Tzero + A
T0+C Tzero + C
TPC Time Projection Chambe
TRD Transition Radiation De
V0+ Vzero + Detector
ZDC Zero Degree Calorimete

ays Detector ٦r lorimeter Particle tor m - Inner Barrel m - Outer Barrel bers

ctrometer

er etector

ter

ALICE version 2.0 - Run 3

- 50 kHz in Pb-Pb (in Run1/2 ~1kHz) => 50-100 times more statistics
- physics focused on interaction of QGP environment with heavy quarks, not yet discovered hadrons with heavy quarks, nuclei and antinuclei production and their interaction with environment
- significant detector inovation: higher granularity, material reduction, closer to interaction point
- completely changed philosophy for data analysis (a new software framework O²)
- 100-times more events with the new philosophy would require only 4 times more computing resources

...to 50 kHz of continuous readout data.

Detector

BEAM ON: data reduction dátový tok

Run 3 data flow

ALICE version 3.0 for Run 5 a Run 6 (2030+)

Shower Pixel Detector (SPD)

Time Of Flight (TOF)

insert-able conversion layer

- 100-times more data than in Run3/4 =>10000-times higher statistics than so far
- the physics programme focused on rare effects connected with hadron formation in QGP, elektric conductivity in QGP, chiral symmetry restoration and so on
 - Expression of Interest: arXiv:1902.01211 also a source for European Strategy for Particle Physics Update (Granada, May 2019)

Future after Run 6?

- ALICE experiment and international collaboration at the biggest collider of the world
- QGP results: highest temperature, QGP in small systems?
- Interdisciplinary results: CPT invariance in antinuclei (**nuclear physics**), antideuteron production (cosmology), interactions with hyperons (astrophysics), confirmation of the dead cone effect (particle physics)
- Future of the experiment near (Run 3 and Run 4) and far (Run 5 and Run 6)

Strongest magnetic field

- a collision of two lead nuclei (each has Q = 82) at ultrarelativistic velocities could generate extremely strong magnetic field of the order of 10¹⁴ –10¹⁵ T (1000-times more than regular magnetars)
- the field is generated by protons which did not participate in the collision (i.e. it is not head-on collision, there must be spectators)
- in the future (LHC Run 3 and Run 4) the electric conductivity of QGP could be studied