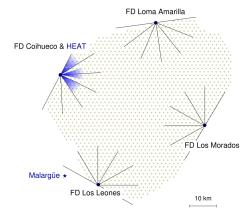
FD calibration status

M. Hrabovský, P. Horváth, L. Chytka, D. Mandát, S. Michal,
L. Nožka, M. Palatka, M. Pech, P. Schovánek, M. Vacula
Kai Daumiller, R. Engel, P. Filip, H.-J. Mathes, J. Rautenberg,
M. Roth, Ch. M. Schaefer (former member), B. Yue

FD calibration status

Pierre Auger Observatory

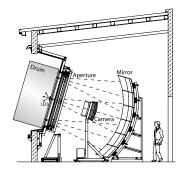

Introduction

Observatory layout

- Detection of ultra-high-energy cosmic rays
- Area of \sim 3000 km²

Hybrid observatory

- Surface Detector (SD)
 - ${\sim}1660$ water-Cherenkov detectors
- Iluorescence Detector (FD)
 - 27 fluorescence telescopes
 - Sets the energy scale

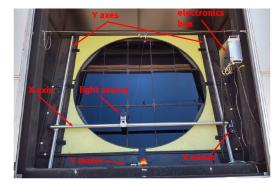


Drum - current calibration method

Absolute end-to-end calibration

Absolutely calibrated light source illuminates the camera through the entire opto-mechanical structure of the telescope

- Large extended uniform light source
- Size of the entire telescope aperture
- Illumination of all 440 PMT pixels
- Drum became unsustainable


Need for a novel calibration method due to degradation of the Drum

XY-Scanner – novel calibration method

Importance of the Absolute end-to-end calibration

The ability to set the energy scale of cosmic rays relies on the FD

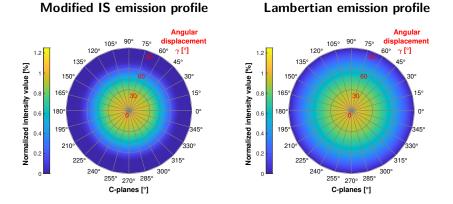
- Light source of a small size
- Scanning of the aperture
- Integrating over all positions

Need for a new calibration light source – integrating sphere

Calibration light source

Modified integrating sphere

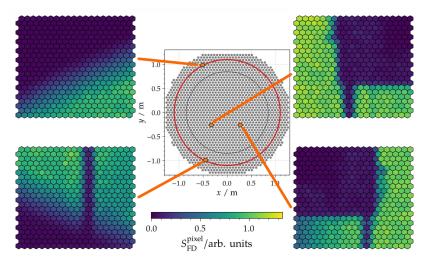
Calibration light source – modified integrating sphere


- LED head and Baffle
- Arresting plug
- Exit port reducer
- Plexiglass cover
- Modified holder

Calibration light source

Comparison of emission profiles

Comparison of emission profiles

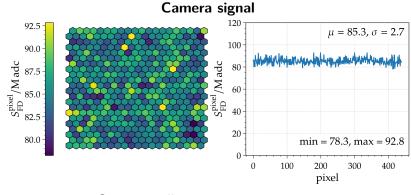


Nearly Lambertian emission profile in the FoV of the FD telescopes

Results of the calibration

Overview

Process of the calibration measurement

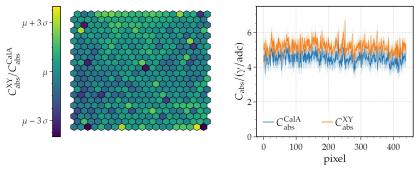


Example of the XY-Scanner measurement process

Results of the calibration

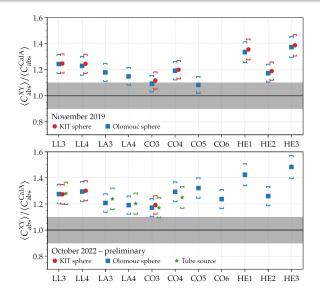
Overview

Example of measurement at single telescope

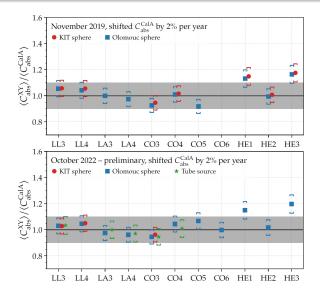

Sum over all measurement positions

Preliminary results

Comparison between XY-Scanner and Cal A tracked absolute calibration constants


Cal A is not sensitive to changes in opto-mechanical structure:

• Dust accumulation etc. – results in $\sim 2\%$ difference per year



Sum over all measurement positions

Telescope-wise results

Telescope-wise results – with 2% per year correction

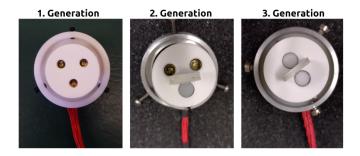
Conclusion and outlook

Novel <u>calibration method</u>

• XY-Scanner

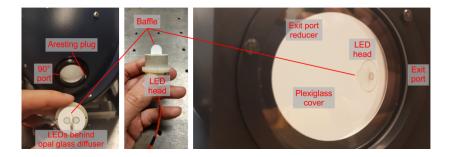
② The calibration light source has been developed

• Modified integrating sphere

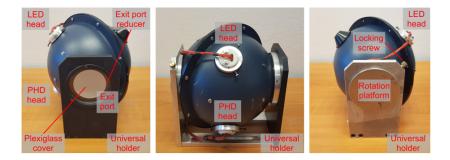

The preliminary results

- In agreement with the Cal A tracked calibration constants
- Degradation of opto-mechanical structure is considered

Thank you for your attention!


Modified primary light source

<u>LED head and Baffle:</u>


- 1. Generation three uncovered LEDs with a different baffle
- 2. Generation three LEDs with the baffle in the middle
 - Active LED covered with an opal glass diffuser
- 3. Generation two symmetrical LEDs with the baffle in the middle
 - Both active and reference LED covered with an opal glass diffuser

Modified integrating sphere

- Arresting plug:
 - To ensure the correct position of LED head
- Exit port reducer:
 - To improve the overall uniformity
- I Plexiglass:
 - To protect from mechanical damage and impurities

Modified holder

Oniversal holder:

- To ease the manipulation
- To rotate with 15° step
- To mount on the XY-Scanner