

Hybrid concept for SWGO SST-1M @ SWGO

Vladimír Novotný^{*+}, Jakub Juryšek⁺, Alena Bakalová⁺, Jakub Vícha⁺, Dalibor Nosek^{*}

> ⁺Institute of Physics, Czech Academy of Sciences, Prague ^{*}Faculty of Mathematics and Physics, Charles University, Prague

Astroparticle CZ meeting, Olomouc, 14/10/2024

Advantages of SWGO+SST

Energy calibration

Two+ SST-1M telescopes = stereo reconstruction

→ possibility to test directional reconstruction

o Gamma-hadron separation

→ independent gammaness estimator – checks of SWGO gamma flagging

Multi-parameter studies

- → on the hybrid subset a lot of additional information interesting for CR
- → study systematic differences between interaction models

o Follow-up observations

→ SST-1M with better angular resolution could observe transients

o Lowering energy threshold of SST-1M

- → high altitude + SWGO helps with shower axis determination @ low E
- → possibility to study Cherenkov light from primary CR particles

Energy calibration of SWGO

- Idea summarized in HAP-22-007 Auger-like calibration
 - → targeted to specify the energy scale IACTs have different systematics
 - → detailed simulation of SWGO response in HAWCsim + HAWCrec

SST-1M + SWGO core energy migration

Energy migration from HAWCrec – clear bias

Energy calibration of SWGO

- Idea summarized in HAP-22-007 Auger-like calibration
 - → targeted to specify the energy scale IACTs have different systematics
 - → detailed simulation of SWGO response in HAWCsim + HAWCrec

Calibration curve from hybrid sims.

Correlation between HAWCrec and SST-1M

SST-1M mono performace

ORSIKA + sim_telarray

→ Four SST-1M telescopes with mono trigger, averaged over 4 tels.

SST-1M mono performace

Occupation between Ondřejov and SWGO site (4500 m a.s.l.)

SST-1M mono + SWGO

◎ Change of performance when SWGO core added to SST-1M rec.

SST-1M mono @ SWGO site

Ochange of performance with zenith angle – 20° and 60°

8

SST-1M mono @ SWGO site

Ochange of performance with zenith angle – 20° and 60°

Mass separation using SST-1M

- Two possible methods available with IACT
 - direct Cherenkov radiation from primary CR particle
 - utilizing Hillas parameters

credits to the H.E.S.S collaboration

Cherenkov from primary CR

- Number of Cherenkov photons from Frank-Tamm formula
 - → proportional to Z^2 , unlike X_{max} which is ~In(A)
 - → almost independent of energy in relativistic regime

$$\frac{d^2 N}{dx d\lambda} = \frac{4\pi^2 z^2 e^2}{hc\lambda^2} \left(1 - \frac{1}{n^2 \beta^2}\right) = \frac{2\pi z^2}{\lambda^2} \alpha \sin^2 \Theta_C$$

- Simulations needed to asses if it can be detected
 - → CORSIKA special mode to flag photons from primary CR
 - → sim_telarray modified to produce useful results
 - issue with random number generator...

Result of simulations

- Two classes of events subtracted to get the signal from primary
 - → all the light from primary (DC) + subsequent shower
 - → only light from the shower

Impact distance and Z² dep.

- 4 classes of primaries simulated
 - → Protons ($^{1}_{1}$ H), Phosphorus ($^{31}_{15}$ P), Scandium ($^{45}_{21}$ Sc), Iron ($^{56}_{26}$ Fe)
 - \rightarrow equal distance in Z²
 - → 0.4-100 TeV, E⁻², θ =20°, altitude 4700 m a.s.l.

→ signal from primaries increases with impact distance

Conclusions

- Mutual benefit between SWGO and SST-1M
- Nice setup for cosmic-ray and gamma-ray studies
- LHASSO will have an array of IACTs in the near future!

Work still in progress

Primary determination

- To determine the primary we ideally need
 - → impact distance well known (thanks also to SWGO array)
 - → Cherenkov signal from primary can we estimate?

signal in pixels projected to the major axis of the Hillas ellipse

Signal determination

- Output Construction of the signal from primary?
 - → project signal to the major axis of the Hillas ellipse
 - → fit the profile by appropriate function (*very first try below*)
 - → extract the area of Cherenkov-related peak

Signal determination

- Output Construction of the signal from primary?
 - → extracted signal correlates with primary-Cherenkov signal

Sampled distributions

- Primary separation seems feasible
- What showers do we actually see in primary Cherenkov?
- O Events with at least 1 pe from primary Cherenkov:

Sampled distributions

- Why so many protons at low energy?
 - \rightarrow the depth of the first interaction

Sampled distributions

- O Heavier primaries are sampled similarly similar int. depth
- o Low energy protons (H) present but with almost no signal

20

Backup

 Means of Cherenkov signal distributions are slightly shifted w.r.t. medians due to tails - to be studied

