

SST-1M Single-Mirror Small Size Telescope

SST-1M: Status of the data analysis

Jakub Juryšek & Thomas Tavernier **Institute of Physics of the Czech Academy of Sciences** For the SST-1M analysis team

The SST-1M project

- A collaborative effort of 17 institutes in 3 countries
- Two 4-m IACTs, Ondrejov observatory (500 m a.s.l.), Czech Republic
- Davies-Cotton optical design, innovative SiPM camera with fully digital trigger and readout
- Commissioning phase, atmospheric conditions not optimal in Ondrejov 'testing bench' for the telescopes
- Operated in mono and stereo mode

SST-1M Single-Mirror Small Size Telescope

alacký Universit

	Focal Length	5600 ± 5 mm
	f/D	1,4
	Dish diameter	4 m
	Mirror Area (*)	9.42 m ²
lics	Mirror Effective Area (*)	6.47 m ²
Opt	Hexagonal Mirror facets	780 ± 3 mm
Ŭ	Mirror PSF D ₈₀ (requirement)	0.082° (8.1 mm
	Mirror PSF D ₈₀ (measured)	0.028° (2.7 mm
	Telescope PSF D ₈₀ (required)	0.25° (24.4 mn
	Telescope PSF D ₈₀ (measured) On-Axis	0.082° (8 mm)
	Camera dimensione (R/thickness)	810 mm / 900 m
•	Camera dimensione (R/thickness) Total pixel number	810 mm / 900 m 1296
	Camera dimensione (R/thickness) Total pixel number Pixel linear size	810 mm / 900 m 1296 23.4 mm
ß	Camera dimensione (R/thickness) Total pixel number Pixel linear size Pixel angular size	810 mm / 900 m 1296 23.4 mm 0.24°
nera	Camera dimensione (R/thickness) Total pixel number Pixel linear size Pixel angular size FoV	810 mm / 900 m 1296 23.4 mm 0.24° 8.9°
amera	Camera dimensione (R/thickness) Total pixel number Pixel linear size Pixel angular size FoV PDE@470 nm, 8% X-talk (LCT/LVR)	810 mm / 900 m 1296 23.4 mm 0.24° 8.9° 23% / 54%
Camera	Camera dimensione (R/thickness) Total pixel number Pixel linear size Pixel angular size FoV PDE@470 nm, 8% X-talk (LCT/LVR) Sampling frequency	810 mm / 900 m 1296 23.4 mm 0.24° 8.9° 23% / 54% 250 MHz
Camera	Camera dimensione (R/thickness) Total pixel number Pixel linear size Pixel angular size FoV PDE@470 nm, 8% X-talk (LCT/LVR) Sampling frequency Maximum trigger rate (80/200 ns window)	810 mm / 900 m 1296 23.4 mm 0.24° 8.9° 23% / 54% 250 MHz 12.5 / 5 MHz
Camera	Camera dimensione (R/thickness) Total pixel number Pixel linear size Pixel angular size FoV PDE@470 nm, 8% X-talk (LCT/LVR) Sampling frequency Maximum trigger rate (80/200 ns window) Maximum readout rate (80/200 ns window)	810 mm / 900 m 1296 23.4 mm 0.24° 8.9° 23% / 54% 250 MHz 12.5 / 5 MHz 22.6 / 9.4 kHz

INIVERSITY

SST-1M 'mini array'

- Two telescopes 155 m apart

• Stereo trigger managed with SWAT, White Rabbit synchronisation of the timestamps

SST-1M major milestones Analysis/science related

- February/November 2022 Telescope 2/1 installation
- March 2023 first sst1mpipe prototype
- April 2023 Crab detection in mono
- June 2023 Crab detection in stereo (no White Rabbi \bullet yet)
- July 2023 1ES 1959+650 detection, SST-1M is going extragalactic!
- October 2023 First Crab detection in true stereo with \bullet White Rabbit
- November 2023 First release of sst1mpipe
- March 2024 Detected Mrk 421 brightening, first ATel **#16533**
- August 2024 First extended source detected in stereo

Mono and stereo performance of the two SST-1M telescope prototypes

J. Juryšek,^{*a*,*} T. Tavernier,^{*a*} V. Novotný,^{*a*,*b*} M. Heller,^{*c*} D. Mandat,^{*a*} M. Pech,^{*a*} C. Alispach,^c A. Araudo,^{d,e} V. Beshley,^f J. Blazek,^a J. Borkowski,^g S. Boula,^h T. Bulik,ⁱ F. Cadoux,^c S. Casanova,^h A. Christov,^a L. Chytka,^j D. della Volpe,^c Y. Favre,^c L. Gibaud,^k T. Gieras,^h P. Hamal,^j M. Hrabovsky,^j M. Jelínek,^l V. Karas,^d E. Lyard,^m E. Mach,^h W. Marek,^h S. Michal,^j J. Michałowski,^h R. Moderski,^g T. Montaruli,^c A. Muraczewski,^g S. R. Muthyala,^a A. Nagai,^c K. Nalewajski,^h D. Neise,ⁿ J. Niemiec,^h M. Nikołajuk,^k M. Ostrowski,^o M. Palatka,^a M. Prouza,^a P. Rajda,^p P. Schovanek,^a K. Seweryn,^q V. Sliusar,^m Ł. Stawarz,^o J. Świerblewski,^h P. Świerk,^h J. Štrobl,^l J. Vícha,^o **R.** Walter,^{*m*} **A.** Zagdański^o and K. Ziętara^o

ATEL #1	6533	ATEL #1653	3
Title: Author: Queries: Posted:	Detection of enhanced Markarian 421 Thomas Tavernier, in t tavernier@fzu.cz 15 Mar 2024; 16:55 U	l very-high-energy gamma-ra he behalf of SST-1M Consor T	Ay emission from t Analysis of commissioning data from SST Prototype of Single-Mirror Small Size Teles
Subjects	:Gamma Ray, TeV, VHE F F N	TeV, VHE, AGN, BlazarT. Tavernier, a,* J.T. Tavernier, a,* J.C. Alispach, c A. AC. Alispach, c S. CaF. Cadoux, c S. CaL. Gibaud, k T. GieL. Gibaud, k T. GiePoS(ICRC2023)592E. Mach, h W. MarPoS(ICRC2023)741A. Muraczewski, kMoriond 2024M. Nikołajuk, k M.K. Seweryn, q V. SR. Walter, M. A. Za	 T. Tavernier,^{a,*} J. Juryšek,^a V. Novotný,^{a,b} M. Heller,^c D. Mandat,^a M. C. Alispach,^c A. Araudo,^{d,e} V. Beshley,^f J. Blazek,^a J. Borkowski,^g F. Cadoux,^c S. Casanova,^h A. Christov,^a L. Chytka,^j D. della Volpe,^g L. Gibaud,^k T. Gieras,^h P. Hamal,^j M. Hrabovsky,^j M. Jelínek,^l V. Ka E. Mach,^h W. Marek,^h S. Michal,^j J. Michałowski,^h R. Moderski,^g T. A. Muraczewski,^g S. R. Muthyala,^a A. Nagai,^c K. Nalewajski,^h D. Ne M. Nikołajuk,^k M. Ostrowski,^o M. Palatka,^a M. Prouza,^a P. Rajda,^p F. K. Seweryn,^q V. Sliusar,^m Ł. Stawarz,^o J. Świerblewski,^h P. Świerk,^g

SST-1M : Commissioning and Preliminary Observation Results

Thomas Tavernier, for the SST-1M Collaboration FZU - Institute of Physics of the Czech Academy of Sciences Na Slovance 1999/2 182 00 Prague 8, Czechia

sst1mpipe: v0.4.1. 21 March 2024

Jurysek, Jakub¹ (D); Tavernier, Thomas¹; Novotny, Vladimir²; Hamal, Petr³; Heller, Matthieu⁴; Blazek, Jiri¹; Muraczewki, Adam⁵; Muthyala, Srija Reddy1; Alispach, Cyril4; Renier, Yves4; Coco, Victor4

Г-1М:А

scope

M. Pech.^a S. Boula,^h T. Bulik ^c Y. Favre,^c aras,^d E. Lvard,^m Montaruli,^a ise,ⁿ J. Niemiec, P. Schovanek,^a ,^{*h*} J. Štrobl,^{*l*} J. Vícha,

The data accumulated so far (only WR stereo)

stereo observation

sst1mpipe

- Data and MC analysis pipeline
 - Raw waveform calibration and integration
 - Removing noise pixels and parametrisation of the shower images
 - Random Forest reconstruction
- Heavily based on ctapipe libraries, logic behind the analysis chain follows the lstchain
- Follows the data models of CTAO, compatibility with GADF for high level data analysis

Calibration: The optical throughput

- astronomy
- Typical ring images at the focal plane
- ullet

Thomas Tavernier

7

Calibration: The optical throughput

Thomas Tavernier

Calibration: The voltage drop

- SiPM characteristics (gain, optical efficiency, x-talk) are affected by the **NSB level**.
- In general the integrated charges drop with NSB
- This effect and the optical efficiency of the telescope can be evaluated using muons.
- Correction of The Voltage drop included in the analysis

Important effect - if not corrected for, the energy scale can be underestimated up to **20%, or 5%** in case of Tel1 and tel2, respectively (in the typical NSB conditions, not accounting for the extremes with strong Moonlight).

Calibration: The atmosphere

- Short-term (aerosols) and long-term component (seasonal changes of molecular profiles)
- Missing calibration leads to systematic in the energy scale
- VAOD estimated from a Sun-Moon photometer 50 km away from the observatory - ranges from 0.05-0.4
- Seasonal atm profiles from ECMWF

- Proton rates far from the intensity threshold (corrected from opt throughput) tells us about atmospheric transparency
- VAOD scales the shower integrated charges wrt to the MC
- I/Imc correlates well with the VAOD
- => we can believe that the "50km away VAOD is about right"
- => We can probably correct for the atmospheric effect just by scaling the integrated charge

Systematic in energy scale: 0.1 error in VAOD -> 10%

long term variations -> <5%

SST1-M physics performance Energy and angular resolution

- Difficult conditions in Ondrejov low altitude and high NSB \bullet both increase the energy threshold (~1 TeV@20 deg zenith angle)
- Angular and energy resolution sufficient for physics cases \bullet despite that
- **Angular resolution:**
 - 0.15 deg (mono)
 - 0.10 deg (stereo) \bullet
- **Energy resolution:**
 - 15-25% (mono)
 - 10-15% (stereo)

Energy resolution SST-1M MONO (20 deg) SST-1M STEREO (20 deg) 10² 10^{1} 10³

SST1-M physics performance Differential sensitivity

- Significant improvement of stereo over mono reconstruction at all energies (except for the effect of higher energy threshold)
- Given large FoV and low altitude, SST-1M probes the highest gamma-ray energies among lacksquareexisting IACTs!

Galactic PeVatron candidate studies

Crab Nebula observation - MONO

- Obs campaign 2023-2024, zenith angle 25-45 deg, energy threshold ~2-3 TeV
- ~33 hours of good mono data after quality cuts, 5sigma detection in ~2.5h
- Excellent agreement of the SED with the results of other experiments (note the tension between different observatories)

 10^{-1} 10^{-2} 10^{-2} 10^{-3} 10^{-4} 10^{-4} 10^{-4} 10^{-4} 10^{-5}

 10°

Crab Nebula observation - STEREO

- Higher energy threshold due to not fully optimised distance between the telescopes 24° ~23h of good stereo data after quality cuts, 23° **5sigma detection in ~1.5h** Declination 22° • Expected performance improvement - angular resolution and sensitivity 21° Remarkable background homogeneity on a 20°
- scale of a few degrees

Excellent instrument for observation of extended sources

SST1M Crab Spectrum (stereo | 23.60 h)

Nearby AGN monitoring Observation campaign of several bright blazars

- 1ES1959+650 first extragalactic source detected with SST-1M (Summer 2023)
- Maintenance of Tel2 camera Tel1 mono only
- Long period of low activity, 5sigma detection in ~20h
- Preliminary analysis using proto-pipeline. No spectral analysis, but proving SST-1M capabilities for AGN monitoring

Nearby AGN monitoring Observation campaign of several bright blazars

- Mrk 421 first extragalactic source detected in stereo mode (Spring 2024)
- High state detected on 15 March 2024: ATel #16533

- Mid-term monitoring (~4 months):
 - integrated SED shows no ulletspectral curvature*
 - Sp index from ECPL fit \bullet (2.6+-0.3) compatible with HAWC 2022 (2.26+-0.12)
 - last 2 sigma fluxpoint at 9 TeV (compare with HAWC 2022)

* DeltaTS=0.03 for intrinsic ECPL over PL, probably because we probe energies already above the $E_{cutoff} = 5.1$ TeV (HAWC, fixed in the fit)

est fit model crinsic
,

VER 2019+368 (Dragonfly) SST-1M enters the realm of extended sources

- Discovered by MILAGRO (Abdo et al. 2009)
- Later resolved into 2-3 sources by VERITAS (Abeysekhara et al. 2014, 2018)
- Photons up to 0.27 PeV (LHAASO 2021)
- Slightly extended: ~0.5 deg, highly asymmetric, energy dependent morphology

•	C	• Rec	
	٠	Several radio, X-ray, HE and VHE sources	202
	•	Supernova Remnant CTB 87	• F
	•	Two pulsars	-
	٠	Sh 2-104 - Star forming HII region	
	•	G75.2+0.1 - PWN	Ĭ
	•	IGR J20188 - fast X-ray transient	ľ
	•	Wolf-Rayet star WR 141	

Tension between SED from different experiments There is no detailed study of VHE morphology

cent modeling (Woo et al. 23):

PSR J2021+3651 (17 kyr, 0^{36} erg/s) + PWN G75.2+0.1/Dragonfly) nteracting with SNR reverse shock

VER 2019+368 (Dragonfly) **SST-1M enters the realm of extended sources**

- Obs campaign in 2024, zenith angle 5-60 deg, ~44 hours of good stereo data after quality cuts
- **Preliminary results:**
 - Source position and integration region for SED fixed at VERITAS reported \bullet values (Abeysekhara et al. 2018)
 - 6sigma (p-value 2e-9) of PL source over "no source" hypothesis (pre-trial) \bullet
 - CTB 87 and VER J2019 regions clearly resolved \bullet

Real data

18

Conclusions

- Commissioning of two SST-1M telescopes continues in Ondrejov, Czech Republic
- The telescopes operate in stereo mode
- The telescopes have proven to meet the expected performance
- extended sources
- of extended galactic PeVatron candidates unique science case

SST-1M Single-Mirror Small Size Telescope

First astrophysical sources detected in stereo, including extragalactic or

 SST-1M stereo observatory combines large FoV, good angular resolution and low altitude, which makes it an ideal instrument for morphological studies

19

Our Prague analysis team

Thomas Tavernier

- All sorts of calibrations
- pipeline development
- Data analysis
- Science

Jakub Juryšek

- Leading the group
- Event reconstruction
- pipeline development
- Data analysis
- Science

Patrik Čechvala

- Improvements of stereo reco
- Performance at different sites

Ana Laura Müller

- MC simulation of g-ray sources
- Burst advocate
- Science

Vladimír Novotný

- MC productions
- Low level MC/data tuning
- Advanced image cleaning

Petr Trávníček

• Steering the project

Srija Reddy Muthyala

- Image cleaning
- Data analysis
- Modelling of blazars

Jiří Blažek

- VAOD studies
- atmospheric molecular profiles

Přemysl Dědic

- Project webpages
- Project wiki
- Database of observations

MC - data agreement **Crab excess events**

Increasing altitude = lost of the unique science case ...for IACTs alone, joining SWGO is completely different story

- no astronomy beyond few tens of TeV..
- Going to India means building third IACT array with the same (or worse) sensitivity as MAGIC and VERITAS on the North
- One may argue with "continuous coverage", but using SST-1M with 9 deg FoV for monitoring of point-like transients is a waste of money ullet

Higher altitude means smaller Cherenkov pool* and higher probability of having VHE/UHE showers out of FoV - lost of UHE sensitivity,

Patrik Cechvala's P4F project

