Anomalous magnetic moments of leptons Vojtěch Pleskot FZÚ AV ČR seminar, 26. 9. 2024

Earth radius *I* tennis ball radius = tennis ball radius *I* atom radius

Dimensions

tennis ball radius / atom radius = atom radius / electron radius

(If it has any! 10⁻¹⁸ m is the limit of our knowledge...)

For sure, electron is

smaller than a tennis ball!

For sure, electron is 10 000 000 000 000 000 times smaller than a tennis ball!

Gigantic success of the Standard Model!

- Electron magnetic moment: 2.00231930436050 ± 0.0000000000019
 - More precise than to measure the Prague Sydney distance to a human hair breadth!

g - 2

lepton magnetic moments

Magnetic moment of a particle - the consequence of spin

Magnetic moment of leptons

Paul Dirac: g = 2

 $g \frac{e}{2m} \vec{S}$ r^{u}

Julian Schwinger: g = 2.0023

Quantum corrections!

Anomalous magnetic moment

electron anomalous magnetic moment

$a_e^{\text{theory}} = 0.001159652180252 \,(95)$

Aoyama, Kinoshita, Nio, 2018

- Not just one but five loops!
- 12672 diagrams!
- Precision: 10⁻¹³

$$\frac{g}{2} = 1 + C_2 \left(\frac{\alpha}{\pi}\right) + C_4 \left(\frac{\alpha}{\pi}\right)^2 + C_6 \left(\frac{\alpha}{\pi}\right)^3 + C_8 \left(\frac{\alpha}{\pi}\right)^4 + C_{10} \left(\frac{\alpha}{\pi}\right)^5 + \dots + a_{\mu\tau} + a_{\text{hadronic}} + a_{\text{weak}}.$$

Pure beauty!

and 12000 similar diagrams...

Even arts got inspired!

Leton 9-2 10h order Feynman diagram/Integrals describing substantic particles. ET statistes steel artwork. 2016-2018

EDWARD TUFTE

Loretta Pettway, Log Cabin, Courthouse Steps, Bricklayer, Gees Bend quilt, 1959 © 2019 Loretta Pettway/Artists Rights Society (ARS) New York

add \$10,000

Decomposing the theory

Volkov arXiv:1909.08015

N.B.: Weak contribution unc. is negligible N.B.: The newest $\alpha(Rb)$ measurement yields the unc. 95 instead of 229

Freeman Dyson

Wow! But we were cooking up just something before we get to invent a better theory...!

Gerald Gabrielse

 $a_e^{\exp} = 0.001159652180590\,(130)$

Measurement

- SM precision: 10^{-13} ... but there's the α measurement discrepancy...

α measurement

- *a_e* measurement together with the SM prediction can be used as the α measurement!
 - Precision very comparable to the most precise $\alpha(Rb)$ measurement!

Gerald Gabrielse, USA

Gerald Gabrielse, tabletop experiment

Gerald Gabrielse with his a_e group

Gerald Gabrielse with his whole group

G.G.: "...good students... especially if they are tenacious, and very skilled and don't break more than \$2000 worth of apparatus per week..."

Just to make sure that our apparatus is turned on, we have to make more precise measurements than most physicists make in their whole career...

Principle of the a_e measurement

- one-electron quantum cyclotron
 - Penning trap
 - cooled to 50 mK, the electron can stay in the ground state ~forever

muon anomalous magnetic moment

Muon g - 2 experiment

Muon g - 2 experiment

Muon g-2 experiment

- Superconducting magnet
 - transported from BNL

Fermilab

Muon g - 2 principle

- Muon circulates in \vec{B} with the cyclotron frequency
- At injection, muon spin is aligned with the muon momentum
- The spin precedes around \vec{B} with a frequency similar but not identical to the cyclotron frequency
- High-energy decay positrons emitted in the spin direction predominantly

Muon g - 2 principle

Just count positrons with the highest energy

 High energy positrons emitted predominantly in the spin direction

Just count positrons with the highest energy

 High energy positrons emitted predominantly in the spin direction

Wow numbers!

r = 7.112 m $\left| \vec{B} \right| = 1.47 \text{ T}$ $\gamma \approx 29.3$ $v \approx 99.94 \% c$ $\gamma \tau \approx 64.4 \ \mu \text{s}$ $T_{\text{c}} = 149.2 \text{ns}$

 $\begin{array}{l} 1 \mbox{ fill} = 1 \mbox{ bunch of length } 120 \mbox{ ns} \times c \\ 1 \mbox{ fill lasts } 700 \mbox{ } \mu \mbox{s} \\ 1 \mbox{ fill contains } 5000 \mbox{ muons} \\ 16 \mbox{ fills per } 1.4 \mbox{ s} \end{array}$

2021 announcement

- Run 1 data
- Accuracy of 10⁻¹⁰!
- $4.2\sigma = 1:40000!$
- *a_µ* 40000 times
 more sensitive to
 new heavy particles
 than *a_e*

- (m^e_{e,µ}/M_{new})² dependency

2023 announcement

- Run 2 + Run 3
- Twice higher accuracy than the Run 1 result!
- 5.1σ from theory!
 - 1:3,000,000

Theory prediction

Theory prediction

Theory prediction uncertainty

Lattice QCD...

hadronic }

N

Lattice QCD...

Muon g-2: to be continued...

- Muon g-2: stopped last year
- Final result to be announced in 2025: twice smaller uncertainty!

- New theory predictions in a couple of years!
- To be further continued in:
 - J-PARC, PSI, Fermilab

a_{τ}

tau anomalous magnetic moment

Tau g-2

Large Hadron Collider (LHC)

Tau g-2

Large Hadron Collider (LHC)

ATLAS: -0.057 < a₁ < 0.024 @95% CL

- Doesn't even say whether *a*, is negative or positive...!!!

CMS: $-0.0042 < a_{T} < 0.0062$ @95% CL

- Order of magnitude more precise than ATLAS
- Still doesn't say the sign of a_{τ} ...!!!

Conclusion

$a_e = 0.001\,159\,652\,180\,59 \pm 0.000\,000\,000\,000\,13$

 $a_{\mu} = 0.001\,165\,920\,59$

 $a_{\tau} = 0.0009$

 $\pm 0.000\,000\,000\,22$

 ± 0.0032

$a_e = 0.001\,159\,652\,180\,59 \pm 0.000\,000\,000\,000\,13$ $a_{\mu} = 0.001\,165\,920\,59$

- $a_{\tau} = 0.0009$
- $\pm 0.000\,000\,000\,22$

 ± 0.0032

Contributions of new heavy particles

$$\left(\frac{m_e}{m_{\rm NP}}\right)^2 = x$$

$$\left(\frac{m_\mu}{m_{\rm NP}}\right)^2 = 43000 x$$

$$\left(\frac{m_\tau}{m_{\rm NP}}\right)^2 = 12000000 x$$

New Physics: e.g. Leptoquarks...

BACKUP

Magnetický moment částice (animace, čas 34:00)

Live Broadcast: Scientific Seminar

Muon g - 2 tricks (few out of many...)

From talk by M. Fertl at PANIC 2021

Taken from Yuki Sue's ICHEP 2024 talk

Cross section measurements of exclusive channels

CMS: -0.0022 < a₁ < 0.0041 @95% CL

 a_{τ}

Přímá hledání nových částic/sil

...až příliš častý scénář...

Přesný test univerzality leptonů

