

Decreasing systematic uncertainty of cosmic-ray mass through testing of models of hadronic interactions beyond LHC energies

Jakub Vícha

vicha@fzu.cz

Outline of the talk

- very brief introduction into cosmic rays and air showers
- review of tests of models of hadronic interactions using air-shower data
 - muon problem in air-shower simulations
- recent reveal of a new problem in air-shower modelling regarding the depth of shower maximum (X_{max})
- consequences of this new phenomenom
 - air-shower modelling
 - cosmic-ray physics

Cosmic rays

- above ~1 PeV, only indirect measurements using air showers
 - energy (spectral features)
 - mass (H...Fe... nuclei)
 - direction (anisotropies)

Seminar of Division 1, FZU

Persisting mystery beyond 10²⁰ eV

Seminar of Division 1, FZU

Persisting mystery beyond 10²⁰ eV

Seminar of Division 1, FZU

Persisting mystery beyond 10²⁰ eV

Seminar of Division 1, FZU

Air shower development

Seminar of Division 1, FZU

Hadronic interactions in air showers

- depth of shower maximum (X_{max})
- number of muons N_{μ} (decays of π^{\pm})

extrapolated to higher energies and different kinematic regions than accessible → large systematic uncertainty on interpreted mass composition

$$\begin{split} X_{max}(A) &\approx X_0(E_0/A) + \lambda_r \ln[\zeta_c^e E_0/A] - \lambda_r \ln[3N_{ch}(E_0/A)] \\ N_{\mu}(A) &\approx [\zeta_c^{\pi} E_0/A]^{\beta}, \qquad \beta \approx 0.9 \\ \text{[Astropart. Phys. 22 (2005) 387]} \end{split}$$

- X_{max} measureable in fluorescence telecopes
 - precise, low duty cycle

sensitive to primary mass A

- Muons measureable in surface detectors
 - em contamination, full duty cycle

Seminar of Division 1, FZU

Hadronic interactions in air showers

- depth of shower maximum (X_{max})
- number of muons N_{μ} (decays of π^{\pm})

sensitive to primary mass A

• extrapolated to higher energies and different kinematic regions than accessible

→ large systematic uncertainty on interpreted mass composition

Seminar of Division 1, FZU

Mass composition of cosmic rays

 our knowledge is dominated by unknown systematic uncertainty of X_{max} predicted from air-shower modelling (> 20 g/cm²), compared to experimental systematics (~ 10 g/cm²)

Seminar of Division 1, FZU

Testing models of hadronic interactions

Are measured data bracketed by model predictions for protons and iron nuclei ?

The key is the consistency of observables in the interpreted mass composition at given reconstructed energy (!)

Current models of hadronic interactions available for tests: EPOS-LHC (LHCR), QGSJet II-04 (III), Sibyll 2.3d (*)

Seminar of Division 1, FZU

First indications of a problem to consistently describe data

Seminar of Division 1, FZU

Selected past and current air-shower experiments

Seminar of Division 1, FZU

This talk: "Short tour towards higher energies"

Seminar of Division 1, FZU

Differencies in measurements

Seminar of Division 1, FZU

Muons at KASCADE-Grande

[PoS(ICRC2023)376] KASCADE-Grande -- GSF model - MC: Fe -MC: H $\theta = [31.66^{\circ}, 40.00^{\circ}]$ $\theta = [0^{\circ}, 21.78^{\circ}]$ $\theta = [21.78^{\circ}, 31.66^{\circ}]$ E_u > 230 MeV -1.8EPOS-LHC $\log_{10}[N_{\mu}/E(GeV)]$ 200 KASCADE array -2.2 100 -1.8SIBYLL 2.3d -100 Grande stations log₁₀[N/E(GeV)] coordinate (m) -200 -300 -400 0 -1.8 QGSJET-II-04 -700 $\log_{10}[N/E(GeV)]$ X coordinate (m -2.2 8.5 7.5 8.5 97 7.5 8 97 7.5 8 8 log₁₀(E/GeV) log₁₀(E/GeV) log₁₀(E/GeV)

Better consistency at larger zenith angles (higher muon energy)

→ too steep muon spectra in models?

Caveat: energy scale of the Pierre Auger Observatory, **GSF** mass-composition model

Seminar of Division 1, FZU

J. Vícha (FZU): Systematics of cosmic-ray mass from air-shower modelling

8.5

9

Signal attenuation at KASCADE-Grande

[Astropart. Phys. 95 (2017) 25]

400

 $N_{\mu}(\theta) = N_{\mu}^{\circ} \mathrm{e}^{-X_0 \sec \theta / \Lambda_{\mu}}$ 300 Λ_{μ} (g/cm²) 1600 280 KG data ($\theta = 0^\circ - 40^\circ$) 260 1400 240 1200 220 200 1000 180 1.1 800 160 140 600 120

Attenuation of all charged particles consistent between data and models

QGSJET II-2 QGSJET II-04 SIBYLL 2.1 EPOS LHC

Attenuation of muons in $1-2\sigma$ tension

 Λ_{ch} (g/cm²)

E_u > 230 MeV

10^{16.3-17.0} eV

KG data (θ = 0° - 40°)

IceCube + IceTop: measurements of GeV and TeV muons

Seminar of Division 1, FZU

J. Vícha (FZU): Systematics of cosmic-ray mass from air-shower modelling

18/65

IceCube + IceTop: measurements of GeV and TeV muons

Seminar of Division 1, FZU

Muon bundles

10¹⁵⁻¹⁹ eV

IceCube

[Astropart. Phys. 78 (2016) 1]

ALICE

Seminar of Division 1, FZU

Correlation of IceCube neutrino flux with ΔT

<10¹⁵ eV

Seminar of Division 1, FZU

Muon density at Yakutsk

no muon deficit and compatible with protons (excluded by Auger)
consequence of a difference in the energy scale ?

Seminar of Division 1, FZU

Tests at Telescope Array

Seminar of Division 1, FZU

The Pierre Auger Observatory - the best instrument to study hadronic interactions above $\sqrt{s} \approx 50$ TeV

SD signal

- muon content
 - from buried scintillators, θ<45°
 - → from N₁₉, θ >65°
- muon production depth
 for core distance
 - r > 1500m, $\theta > 65^{\circ}$
- muon energy spectrum
 - from attenuation with
 θ and r
- rise time of signal vs. r

FD longitudinal profile

- estimation of primary masses from X_{max} fits
- interpretation of X_{max} moments using In A
- p-air cross-section from tail of X_{max} distribution
- average shape of longitudinal profiles
- frequency of anomalous showers

The Pierre Auger Observatory - the best instrument to study hadronic interactions above $\sqrt{s} \approx 50$ TeV

SD signal

- muon content
 - from buried scintillators, θ<45°
 from N = θ>65°
- muon production depth
 for core distance

 r > 1500m, θ>65°
 [Phys. Rev. D 90 (2014) 012012]
- muon energy spectrum
 from attenuation with θ and r
- rise time of signal vs. r [Phys. Rev. D 96 (2017) 122003]

FD longitudinal profile

- estimation of primary masses from X_{max} fits
- interpretation of X_{max} moments using In A
- p-air cross-section from tail of X_{max} distribution
- average shape of longitudinal profiles [JCAP 03 (2019) 018]
- frequency of anomalous showers

[EPJ Web of Conferences 144 (2017) 01009]

not covered here, see references and backup slides

Seminar of Division 1, FZU

The Pierre Auger Observatory - the best instrument to study hadronic interactions above $\sqrt{s} \approx 50$ TeV

Especially for combination of SD and FD observables ! + more to come in near future

Seminar of Division 1, FZU

PIERRE AUGER Observatory

Observables relevant to hadronic interaction models

Seminar of Division 1, FZU

WHISP - energy evolution of the muon problem

[PoS(ICRC2023)466, L.Cazon Jan 2024 - Workshop on the Tuning of hadronic interactions]

The z-scale after applying the energy shifts for common energy calibration. Preliminary

Seminar of Division 1, FZU

SD signal

- muon content
 from buried scintillators, θ<45
 - → from N₁₉, θ>65°
- muon production depth
 for core distance
 r > 1500m, θ>65°
- muon energy spectrum
 - from attenuation with
 θ and r

rise time of signal vs. r

- very hard in general with SD only
- large systematics from energy scale
- multi-detector approach necessary:
 - → SD+FD at different zenith angles
 - → WCD+RPC+SSD+UMD+RD
 - @ AugerPrime

estimation of primary masses from X_{max} fits

interpretation of X_{max} moments using In A

ssp

+ Underground Muon Detector

Seminar of Division 1, FZU

Seminar of Division 1, FZU

Combining SD and FD observables

Seminar of Division 1, FZU

Ground signal + Longitudinal profile

- inclined showers + FD -> $\sigma(N_{\mu})$
- correlation between X_{max} and S(1000)
- top-down approach -> R_{had}
- applying shower-universality approach -> R_{had}
- 2-dim distributions [S(1000),X_{max}] -> $R_{had}(\theta)$, ΔX_{max}

Ground signal + Longitudinal profile

• inclined showers + FD -> $\sigma(N_{\mu})$

- correlation between X_{max} and S(1000)
- top-down approach -> R_{hac}
 - confirmation of a problem to describe the size of the muon content: factor ~1.3-1.6
 - muon fluctuations are consistent with data (no obvious problem in the first interaction)
 - \rightarrow strong constraints on the Lorentz invariance violation

(journal publication in preparation)

Seminar of Division 1, FZU

Combining SD and FD observables

Seminar of Division 1, FZU

Ground signal + Longitudinal profile

10^{18.5-19.0} eV

- inclined showers + FD -> $\sigma(N_{\mu})$
- correlation between X_{max} and S(1000)

- ~model-independent estimator of spread of beam masses
- >5σ tension with light masses from X_{max} fits for QGSJet II-04 (too shallow X_{max} scale)

10¹⁹ eV

Combining SD and FD observables

1.2

1.4

 $sec(\theta)$

1.6

1.8

2

Ground signal + Longitudinal profile

- inclined showers + FD -> $\sigma(N_{\mu})$
- correlation between X_{max} and S(1000)
- top-down approach -> R_{had} ~ 1.3 1.6 !

[Phys. Rev. Lett. 117 (2016) 192001]

- applying shower-universality approach -> R_{had}
- 2-dim distributions [S(1000),X_{max}] -> $R_{had}(\theta)$, ΔX_{max}
- mass from measured X_{max} depends on MC X_{max} scale
- ~2-3σ tension with strong dependence on energy scale

Seminar of Division 1, FZU

Combining SD and FD observables

Seminar of Division 1, FZU

Ground signal + Longitudinal profile

- applying shower-universality approach
 -> R_{had} ~ 1.1 1.3 [PoS(ICRC2023)339, arXiv:2405.03494]
- 2-dim distributions [S(1000), X_{max}] -> $R_{had}(\theta)$, ΔX_n
 - $\sim 2\sigma$ tension
 - R_{had} smaller than in top-down approach
 - ~insensitive to the MC $\rm X_{max}$ scale
 - journal publication in preparation

Mass composition & tests of hadronic interactions

Improvement in data description

[Phys. Rev. D 109 (2024) 102001]

$$\ln \mathscr{L} = \begin{cases} \sum_{k} \sum_{j} (C_{jk} - n_{jk} + n_{jk} \ln \frac{n_{jk}}{C_{jk}}), & n_{jk} > 0\\ \sum_{k} \sum_{j} C_{jk}, & n_{jk} = 0 \end{cases}$$

$\ln \mathscr{L}_{\min}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
none	2022.9	4508.0	2496.5
$\Delta X_{\rm max}$	738.6	1674.8	1015.7
$R_{\rm had} = {\rm const.}$	489.2	684.4	521.6
$R_{\rm had}(\boldsymbol{\theta})$	489.2	673.9	517.6
$R_{\rm had} = {\rm const.} \text{ and } \Delta X_{\rm max}$	452.2	486.7	454.2
$R_{\rm had}(\theta)$ and $\Delta X_{\rm max}$	451.9	476.3	451.6

Seminar of Division 1, FZU

PIERRE

10^{18.5-19.0} eV

Improvement in data description

[Phys. Rev. D 109 (2024) 102001]

$\ln \mathscr{L}_{\min}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
none	2022.9	4508.0	2496.5
ΔX_{\max}	738.6	1674.8	1015.7
$R_{\rm had} = {\rm const.}$	489.2	684.4	521.6
$R_{\rm had}(\theta)$	489.2	673.9	517.6
$R_{\rm had} = {\rm const.} \text{ and } \Delta X_{\rm max}$	452.2	486.7	454.2
$R_{\rm had}(\boldsymbol{\theta})$ and $\Delta X_{\rm max}$	451.9	476.3	451.6

41/65

Seminar of Division 1, FZU

PIERRE AUGER 10^{18.5-19.0} eV

[Phys. Rev. D 109 (2024) 102001]

p-values of fits from MC-MC tests > 10% for all three models

	$\ln \mathscr{L}_{\min}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
	none	2022.9	4508.0	2496.5
	$\Delta X_{\rm max}$	738.6	1674.8	1015.7
	$R_{\rm had} = {\rm const.}$	489.2	684.4	521.6
	$R_{\rm had}(\boldsymbol{ heta})$	489.2	673.9	517.6
	$R_{\rm had} = {\rm const.} \text{ and } \Delta X_{\rm max}$	452.2	486.7	454.2
ł	$R_{\rm had}(\theta)$ and $\Delta X_{\rm max}$	451.9	476.3	451.6
1				

Significant improvement >5 σ using R_{had} and ΔX_{max} (Likelihood ratio tests for nested model using Wilks' theorem)

Seminar of Division 1, FZU

PIERRE

10^{18.5-19.0} eV

Fitted parameters

[Phys. Rev. D 109 (2024) 102001]

Seminar of Division 1, FZU

Attenuation of hadronic signal with zenith angle

[Phys. Rev. D 109 (2024) 102001]

 $R_{had}(heta_{max})$

 $R_{had}(\theta_{min})$

Indication of harder muon spectra in QGSJet II-04 than in data

Seminar of Division 1, FZU

Scanning in combinations of experimental systematics

Seminar of Division 1, FZU

Summary of tests of models using Auger data

test	energy / Ee	$V \theta / ^{\circ}$	Epos-LHC	QGSJET-II-04	SIBYLL 2.3d
X _{max} moments	\sim 3 to 50	0 to 80	no tension	tension	no tension (2.3c)
X_{max} : $S(1000)$ correlation	3 to 10	0 to 60	no tension	tension	no tension (2.3c)
mean muon number	$\sim \! 10$	${\sim}67$	tension	tension	tension
mean muon number	0.2 to 2	0 to 45	tension	tension	
fluctuation of muon number	4 to 40	${\sim}67$	no tension	no tension	no tension
muon production depth	20 to 70	${\sim}60$	tension	no tension	
<i>S</i> (1000)	$\sim \! 10$	0 to 60	tension	tension	
[X _{max} , S(1000)] fits	3 to 10	0 to 60	tension	tension	tension

- all models have problems ...
- a need to describe consistently both X_{max} and ground signal
 issue in both observables !

Seminar of Division 1, FZU

Adding muons ~ without changing X_{max}

Core-corona model - collective statistical hadronization → EPOS 4

Sibyll * - artificial enhancement of muons

Seminar of Division 1, FZU

Modifications of hadronic interactions

- 1D CONEX simulations
- Sibyll 2.1 @ 10^{19.5} eV
- cross-section modification, or resampling of produced particles
- energy threshold for modifications 10¹⁵ eV

Seminar of Division 1, FZU

Towards more complex explanation: MOCHI

MOdified Characteristics of Hadronic Interactions

J. Ebr, JV, J. Blažek, T. Pierog, E. Santos, P. Travnicek, N. Denner and R. Ulrich [PoS(ICRC2023)245]

- CONEX in CORSIKA: 3D information
- modification factors in cross-section, multiplicity and elasticity

- MOCHI library:
 - Sibyll 2.3d
 - energy 10^{18.7} eV
 - protons and iron nuclei
 - 5 zenith angles
 - 1000 showers per "bin"
 - 750 000 showers (~200 TB, ~250y CPU time)

Seminar of Division 1, FZU J. Vícha (FZU): Systematics of cosmic-ray mass from air-shower modelling

Range of modifications and thresholds

Cross-section ($E_{thr} = 10^{16} \text{ eV}$) - well constrained for p-p at LHC to a few % - unc. in conversion to p-A limited by CMS p-Pb measurement

Multiplicity ($E_{thr} = 10^{15} \text{ eV}$)

- no p-A data, limited rapidity coverage

Elasticity ($E_{thr} = 10^{14} \text{ eV}$)

- difficult at accelerators, limits from nuclear emulsion chambers

- recent LHCf neutron elasticity measurement?
- range of modifications limited by internal consistency

$$f(E, f_{19}) = 1 + (f_{19} - 1) \cdot \frac{\log_{10}(E/E_{\text{thr}})}{\log_{10}(10 \text{ EeV}/E_{\text{thr}})}$$

Seminar of Division 1, FZU

Comparison with Auger results

J. Ebr, JV, J. Blažek, T. Pierog, E. Santos, P. Travnicek, N. Denner and R. Ulrich [PoS(ICRC2023)245]

Seminar of Division 1, FZU

Effect on tail of X_{max} **distribution**

J. Ebr, JV, J. Blažek, T. Pierog, E. Santos, P. Travnicek, N. Denner and R. Ulrich [PoS(ICRC2023)245]

Seminar of Division 1, FZU

Effect on X_{max} fluctuations

J. Ebr, JV, J. Blažek, T. Pierog, E. Santos, P. Travnicek, N. Denner and R. Ulrich [PoS(ICRC2023)245]

PoS(ICRC2023)365

Seminar of Division 1, FZU

Summary on tests of models of hadronic interactions

• \sim 2-3 σ data/MC tensions in many analyses, but some experiments are consistent

 \rightarrow systematics on energy estimation is crucial \rightarrow multi-detector measurements needed and cross-calibration methods seems to be esential !

- yet, it does not seem to be a solution → connections of low and high energy tests of model predictions are crucial for understanding the systematic uncertainties on mass composition coming from shower modelling
- news from Auger at 3-10 EeV: current models of hadronic interactions are proven to fail to describe combined FD+SD data with more than 5σ !
 - possible underestimation of experimental systematics ruled out
 - possibility of a heavier mass composition (disappointing scenario) should be seriously considered !
 - → alleviation of the "muon problem" and start of the "X_{max} problem"
- modifications of macro-parameters (cross-section, multiplicity, elasticity) of hadronic interactions does not seem (preliminary) to be enough

➔ different approach is needed: modifying micro parameters (production rates and energy spectra of secondary particles) or (not exclusively!) revisions of models of hadronic interactions

X_{max} fluctuations of Fe and elongation rate are very universal

Seminar of Division 1, FZU

Heavy-metal scenario

- Assumptions
 - X_{max} fluctuations and elongation rate from QGSJet II-04 and Sibyll 2.3d (bug in EPOS-LHC)
 - pure Fe nuclei above 10^{19.6} eV (~40 EeV)
 - freedom in the predicted X_{max} scale derived from Auger DNN [accepted in PRD, arXiv:2406.06319]
 - $\Rightarrow \Delta X_{\text{max}} = 52 \pm 1 \stackrel{+11}{_{-8}} \text{g/cm}^2$ for QGSJET-II-04 $\Rightarrow \Delta X_{\text{max}} = 29 \pm 1 \stackrel{+12}{_{-7}} \text{g/cm}^2$
 - for SIBYLL 2.3d

[Phys. Rev. D 109 (2024) 102001]

	$R_{\rm had}(\theta_{\rm min})$	$R_{\rm had}(\theta_{\rm max})$	$\Delta X_{\rm max}/({\rm g/cm^2})$
EPOS-LHC	$1.15 \pm 0.01 \ ^{+0.20}_{-0.16}$	$1.16 \pm 0.01 \ ^{+0.14}_{-0.10}$	$22 \pm 3 {}^{+11}_{14}$
QGSJET-II-04	$1.24 \pm 0.01 \stackrel{+ 0.22}{_{- 0.19}}$	$1.18 \pm 0.01 \stackrel{+ 0.15}{_{- 0.12}}$	$47^{+2}_{-1}{}^{+9}_{-11}$
SIBYLL 2.3d	$1.18 \pm 0.01 \stackrel{+ 0.21}{_{- 0.17}}$	$1.15 \pm 0.01 \stackrel{+ 0.15}{_{- 0.11}}$	$29\pm2\ _{-13}^{+10}$

Seminar of Division 1, FZU

Heavy-metal scenario: In A moments

Seminar of Division 1, FZU

Heavy-metal scenario: In A moments

[JV, A. Bakalová, O. Tkachenko, A. L. Müller, M. Stadelmaier, UHECR 2024]

- ΔX_{max} consistent with results from [X_{max},S(1000)](θ) fits
 [Phys. Rev. D 109 (2024) 102001]
- σ²(In A) consistent with result from X_{max}-S₃₈ correlation
 [Phys. Lett. B 762 (2016) 288]
- umbrella plot, σ²(ln A) vs. <ln A>, generally more physical

Heavy-metal scenario: energy evolution of individual primary fractions and fluxes [JV, A. Bakalová, O. Tkachenko, A. L. Müller, M. Stadelmaier, UHECR 20241

p

1.0

0.8

0.6

power-law

gauss $\times \exp$.

p

He

Ν

Fe

Auger

р

He

N

Fe

20.0

19.5

20.0

1) parameterization of energy evolution of primary fractions using Auger X_{max} data

power-law

gauss $\times \exp$.

1.0

0.8

0.6

Seminar of Division 1, FZU

Heavy-metal scenario: energy evolution of rigidity (E/Z)

[JV, A. Bakalová, O. Tkachenko, A. L. Müller, M. Stadelmaier, UHECR 2024]

Seminar of Division 1, FZU

Heavy-metal scenario: number of muons

[Phys. Rev. Lett. 126 (2021) 152002]

[JV, A. Bakalová, O. Tkachenko, A. L. Müller, M. Stadelmaier, UHECR 2024]

Muon problem alleviated to ~20%, ~independently on energy

Seminar of Division 1, FZU

 $X_{\rm max}\rangle/{\rm g\,cm^{-2}}$

Heavy-metal scenario: cross-section modification

[JV, A. Bakalová, O. Tkachenko, A. L. Müller, M. Stadelmaier, UHECR 2024]

- Xmax data from [Phys. Rev. D 90 (2014) 122005], method from [O. Tkachenko for Pierre Auger Coll. PoS(ICRC2023)438]
- no modification of cross-section in models is needed
- very good description of X_{max} distributions obtained

Seminar of Division 1, FZU

Heavy-metal scenario: backtracking in Galactic magnetic field

Seminar of Division 1, FZU

J. Vícha (FZU): Systematics of cosmic-ray mass from air-shower modelling

63/65

EPOS-LHCR is approaching !

[T. Pierog, Dec 2024 - CRs and v in MM era, APC, Paris, France]

Seminar of Division 1, FZU

More air-shower studies yet to come! Stay tuned

[eV/m²]

IH AB10

 new models of hadronic interactions (EPOS 4(LHCR), QGSJet III, Sibyll **?, ...) and new air-shower generator (CORSIKA 8) are expected to decrease the systematic uncertainties on mass composition of cosmic rays

→ p + O collisions at the end of Run 3 at LHC are very important !

- AugerPrime (2024-2035) will be the best testing facility for forward hadronic interactions at $\sqrt{s} \sim 10-200 \text{ TeV}$
- + IceCube-Gen2 (2032-?) at √s ~ 1-50 TeV
- + LHAASO (2023-?) at √s ~ 0.1-1 TeV ?
- and new methods (Machine Learning) and more data ...

Thank you for your attention !

Seminar of Division 1, FZU

Backup slides

Seminar of Division 1, FZU J. Vícha (FZU): Systematics of cosmic-ray mass from air-shower modelling

Air-shower Measurements

Seminar of Division 1, FZU

10^{19.3-19.8} eV [Phys. Rev. D 90 (2014) 012012] [Phys. Rev. D 109 (2024) 094019] 650 (g/cm^2) proton SD signal p-induced EAS 600 л^{хеш} 600 550 $\langle X^{\mu}_{max} \rangle [g/cm^2]$ 500 **EPOS-LHC** 550 Sibyll 2.3d 450 **OGSJet III** iron muon production depth **Epos-LHC OGSJet II-04** QGSJetll-04 → for core distance 500 400 r > 1500m, θ>65° 19 20 182×10¹⁹ 10²⁰ 3×10¹⁹ 10 10 10E [eV] E_0 (eV) • \mathbf{X}_{max}^{μ} QGSJetII-04 Epos-LHC ▲ X_{max} nuon production point EPOS-LHC and (likely also) ٠ Sibyll 2.3d too deep $\sim 2\sigma$ ⟨InA, ⟨INA⟩ $\sqrt{r^2 + (z - \Lambda)^2}$ MPD tunable by pion • muon traveled distance to ground diffraction (loosely constrained ground (r, ζ) impact by current accelerators data) point 10¹⁹ 10¹⁸ 10¹⁹ 10²⁰ 10¹⁸ 1020 E [eV] E [eV]

Seminar of Division 1, FZU

Seminar of Division 1, FZU

FD longitudinal profile

- so far consistent within ~2σ with models
- smaller systematics on aerosol measurement could improve constraints
 - average shape of longitudinal profiles
 - frequency of anomalous showers

Seminar of Division 1, FZU

Hybrid detection at the Pierre Auger Observatory

Seminar of Division 1, FZU

Motivations for modifications of MC predictions

Caveat: no modifications in fluctuations or mass-depencies etc. considered

ad-hoc modifications $X_{max} \rightarrow X_{max} + \Delta X_{max}$ $S_{had}(\theta) \rightarrow S_{had}(\theta) \cdot R_{had}(\theta)$

Seminar of Division 1, FZU

Effect of modified X_{max} **on the ground signal**

Seminar of Division 1, FZU

Assumption on primary species

 ΔX_{max} decreases by about 5-7, 10-17 and 30-40 g/cm² and R_{had}(θ) increases by about 2-5%, 4-9% and 15-20% when the heaviest primary Fe is replaced by Si, O and He, respectively

$\ln \mathscr{L}_{\min}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
p He	518.3	633.5	563.5
p He O	467.5	523.3	486.6
p He O Fe	451.9	476.3	451.6

Significance of improvement of data description above 5σ

Systematic uncertainties

Seminar of Division 1, FZU

J. Vícha (FZU): Systematics of cosmic-ray mass from air-shower modelling

77/65

MC-MC tests

Seminar of Division 1, FZU

Experiments using muons for energy estimation

[PoS(ICRC2023)466, L.Cazon Jan 2024 - Workshop on the Tuning of hadronic interactions]

• Classification according to the muon contamination in the estimated primary energy.

Seminar of Division 1, FZU

Experiments applying CR intensity estimation of energy

[PoS(ICRC2023)466, L.Cazon Jan 2024 - Workshop on the Tuning of hadronic interactions]

• Classification according to the muon contamination in the estimated primary energy.

Seminar of Division 1, FZU

Experiments using ~muon independent energy estimator

[PoS(ICRC2023)466, L.Cazon Jan 2024 - Workshop on the Tuning of hadronic interactions]

• Classification according to the muon contamination in the estimated primary energy.

Seminar of Division 1, FZU

Possible mass-(in)dependence of X_{max} shift

"changing the normalization of energy dependence" \rightarrow mass independent modifications

multiplicity: $N \propto N_0 \cdot E^{\alpha}$ inelasticity: $\kappa \propto \kappa_0 \cdot E^{-\omega}$

$$X_{\max}^{A} = X_{1}^{A} + X_{0} \ln \frac{\kappa E}{A \cdot 2N\xi_{c}^{\pi}} =$$

$$X_{1}^{A} + (1 - \alpha - \omega) \cdot (X_{0} \ln \frac{E}{A \cdot \xi_{c}^{\pi}}) + X_{0} \cdot (\ln \kappa_{0} - \ln N_{0})$$

$$\stackrel{\kappa_{0} \rightarrow f_{\kappa} \kappa_{0}}{N_{0} \rightarrow f_{\kappa} N_{0}} \Rightarrow \qquad X_{\max}^{A} = X_{\max}^{A} + X_{0} (\ln(f_{\kappa}) - \ln(f_{N}))$$

[PoS(ICRC2023)245]

MOCHI (preliminary)

"changing the shape of energy dependence" \rightarrow mass-dependent modifications

Seminar of Division 1, FZU

J. Vícha (FZU): Systematics of cosmic-ray mass from air-shower modelling

83/65