Exploring Particle Physics and Quantum Gravity via Primordial Inflation

Dražen Glavan CEICO, FZU – Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

FZU, 16.01.2025.

credit: NASA

credit: CTC Cambridge

credit: ESA

 Can we utilize primordial inflation to probe beyond standard model physics? (e.g. cosmological collider program)
 Arkani-Hamed, Maldacena, *Cosmological Collider Physics*, [arXiv:1503.08043 [hep-th]].
 Incredible energy scale of expansion,

 $E_{\rm inf}/E_{\rm LHC} \sim 10^{12}$

- Does this energy scale excite only very heavy physics?
- Where do we get signals from?
- for several decades: Cosmic Microwave Background (CMB)
- quite recent: Gravitational Wave Background (GWB)

Cosmic Microwave background (CMB) 1

Universe permeated by the most perfect black body radiation at $T = 2.7 \mathrm{K}$ (COBE satellite launched 1989)

Temperature fluctuation $\sim 10^{-5}$ (Planck satellite launched 2009)

Cosmic Microwave background (CMB) 2

credit: ESA/Planck

Gravitational Wave Background (GWB) 1

Very clean signal because of weak interactions \checkmark

Very difficult to detect because of weak interactions imes

 \longrightarrow still in early stages of development

Gravitational waves first detected less than a decade ago (<u>localized source</u>: from black hole mergers)

LIGO Scientific and Virgo Collaborations, *Observation of Gravitational Waves from a Binary Black Hole Merger*, Phys.Rev.Lett. 116 (2016) 6, 061102, [1602.03837]

7

Gravitational Wave Background (GWB) 2

Cosmological stochastic background?

Pulsar timing arrays — measure correlations between pairs of pulsars

NANOGrav Collaboration, *The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background*, Astrophys.J.Lett. 951 (2023) 1, L8, [2306.16213]

credit: NASA

Hellings–Downs curve: characteristic shape of pulsar timing delay correlations for GW

Fundamental physics from early Universe cosmology?

Very difficult... but energy scales are fantastic!

 $E_{\rm inf}/E_{\rm LHC} \sim 10^{12}$

Inflation is the most promising period

■ BSM physics?

Let us also understand very well the signals of known physics

originating from extreme conditions of primordial Universe.

Quantum gravity? Very small, but not hopelessly small?

Primordial inflation

Expanding cosmological space (FLRW line element)

$$ds^2 = -dt^2 + a^2(t)d\vec{x}^2$$

Rate of expansion captured by the Hubble rate

$$H = \frac{\dot{a}}{a}$$

Acceleration/deceleration captured by the slow-roll parameter

$$\epsilon = -\frac{\dot{H}}{H^2}\,, \qquad (\text{acceleration}: \epsilon < 1, \ \text{deceleration}: \epsilon > 1)$$

Primordial inflation:

$$0 < \epsilon \ll 1 \implies H \approx \text{const.} \implies a(t) \sim e^{Ht}$$

Gravitational particle production 1

Accelerated expansion of space creates long wavelength quanta

Parker, Particle creation in expanding universes, Phys.Rev.Lett. 21 (1968) 562-564

Gravitational particle production 2

Only for non-conformally coupled fields

Example: electromagnetism does not see expanding universe

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{4} g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} \right] = \int d^4x \left[-\frac{1}{4} \eta^{\mu\rho} \eta^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} \right]$$

Scalars and gravitons are not conformally coupled

\longrightarrow primordial power spectra of scalar and tensor cosmological perturbations

Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe JETP Lett. 30 (1979) 682-685, Pisma Zh.Eksp.Teor.Fiz. 30 (1979) 719-723 Mukhanov, Chibisov, Quantum Fluctuations and a Nonsingular Universe JETP Lett. 33 (1981) 532-535, Pisma Zh.Eksp.Teor.Fiz. 33 (1981) 549-553

credit: Planch

Gravitational particle production 3

Conformal fields couple to scalars and gravitons

- effects of rapid expansion communicated via interactions

Scalar electrodynamics (SQED) in inflation 1

Massless complex scalar interacting with a photon in inflation

$$S[\Phi, \Phi^*, A_{\mu}] = \int d^D x \sqrt{-g} \left[-\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - (D_{\mu} \Phi)^* (D_{\nu} \Phi) \right]$$

- Φ : complex scalar
- A_{μ} : vector potential

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

- : vector field strength
- $D_{\mu} = \partial_{\mu} + i \boldsymbol{q} A_{\mu}$: U(1) covariant derivative
 - \boldsymbol{q} : U(1) charge

Scalar electrodynamics (SQED) in inflation 2

Prokopec, Tornkvist, Woodard, *One loop vacuum polarization in a locally de Sitter background*, Annals Phys. 303 (2003) 251-274 [arXiv:gr-qc/0205130 [gr-qc]]

Kahya, Woodard, *Charged scalar self-mass during inflation*, Phys. Rev. D **72** (2005), 104001 [arXiv:gr-qc/0508015].

Kahya, Woodard, One Loop Corrected Mode Functions for SQED during Inflation, Phys. Rev. D 74 (2006), 084012 [arXiv:gr-qc/0608049].

Glavan, Rigopoulos, "One-loop electromagnetic correlators of SQED in power-law inflation," JCAP **02** (2021), 021 [arXiv:1909.11741].

Use one-loop vacuum polarization to correct the evolution of photons

$$\partial_{\nu} \left[\sqrt{-g} g^{\mu \rho} g^{\nu \sigma} F_{\rho \sigma}(x) \right] + \int d^4 x' \, \boldsymbol{i} \big[{}^{\boldsymbol{\mu}} \boldsymbol{\Pi}^{\boldsymbol{\nu}} \big]_{\mathbf{ret}}(\boldsymbol{x}; \boldsymbol{x'}) A_{\nu}(x') = 0$$

Perturbative result:

Prokopec, Tornkvist, Woodard, *Photon mass from inflation*, Phys.Rev.Lett. 89 (2002) 101301, [arXiv:astro-ph/0205331 [astro-ph]]

$$m_{\gamma}^2 = \frac{\boldsymbol{q^2 H^2}}{2\pi^2} \times \ln(\boldsymbol{a})$$

time-dependent photon mass!

→ breakdown of perturbation theory!

Scalar electrodynamics (SQED) in inflation 4

Non-perturbative results:

Prokopec, Tsamis, Woodard, *Two Loop Scalar Bilinears for Inflationary SQED*, Class. Quant. Grav. **24** (2007), 201-230 [arXiv:gr-qc/0607094].

Prokopec, Tsamis, Woodard, *Stochastic Inflationary Scalar Electrodynamics*, Annals Phys. **323** (2008), 1324-1360 [arXiv:0707.0847].

Prokopec, Tsamis, Woodard, *Two loop stress-energy tensor for inflationary scalar electrodynamics*, Phys. Rev. D **78** (2008), 043523 [arXiv:0802.3673].

$$m_{\gamma}^2 = 2q^2 \times \langle \Phi^* \Phi \rangle \approx 2q^2 \times 1.65 \frac{H^2}{q^2} = 3.3H^2$$

 $m_{\phi}^2 \approx \frac{q^2 H^2}{3\pi^2}$

no secular growth, but non-perturbatively large photon mass!

Interpret data?

SM photon with dynamically induced mass or heavy BSM vector?

Typical energy scale is Planck energy: $E_{\rm P}\!=\!\sqrt{\frac{\hbar c^5}{G}}\!\sim\!1.22\!\times\!10^{19}{\rm GeV}$

Where can we find good candidate systems?

$$\frac{?}{E_{\rm P}} ~\sim~ \frac{?}{10^{19} {\rm GeV}} ~\sim ?$$

Typical energy scale is Planck energy: $E_{\rm P} = \sqrt{\frac{\hbar c^5}{G}} \sim 1.22 \times 10^{19} {\rm GeV}$

Where can we find good candidate systems?

$$\frac{?}{E_{\rm P}} \sim \frac{?}{10^{19} {\rm GeV}} \sim ?$$

Our best most advanced accelerator:

$$\frac{E_{\rm \tiny LHC}}{E_{\rm \tiny P}} ~\sim~ \frac{10^4 {\rm GeV}}{10^{19} {\rm GeV}} ~\sim~ 10^{-15}$$

Typical energy scale is Planck energy: $E_{\rm P} = \sqrt{\frac{\hbar c^5}{G}} \sim 1.22 \times 10^{19} {\rm GeV}$

Where can we find good candidate systems?

$$\frac{?}{E_{\rm P}} \sim \frac{?}{10^{19} {\rm GeV}} \sim ?$$

Our best most advanced accelerator:

$$\frac{E_{\rm \tiny LHC}}{E_{\rm \tiny P}} ~\sim~ \frac{10^4 {\rm GeV}}{10^{19} {\rm GeV}} ~\sim~ 10^{-15}$$

Our universe expands today

$$\frac{\hbar H_0}{E_{\rm P}} \sim \frac{10^{-42} {\rm GeV}}{10^{19} {\rm GeV}} \sim 10^{-62}$$

Typical energy scale is Planck energy: $E_{\rm P} = \sqrt{\frac{\hbar c^5}{G}} \sim 1.22 \times 10^{19} {\rm GeV}$

Where can we find good candidate systems?

$$\frac{?}{E_{\rm P}} \sim \frac{?}{10^{19} {\rm GeV}} \sim ?$$

Our best most advanced accelerator:

$$\frac{E_{\rm LHC}}{E_{\rm P}} \sim \frac{10^4 {\rm GeV}}{10^{19} {\rm GeV}} \sim 10^{-15}$$

Our universe expands today

$$\frac{\hbar H_0}{E_{\rm P}} \sim \frac{10^{-42} {\rm GeV}}{10^{19} {\rm GeV}} \sim 10^{-61}$$

Our Universe expanded much faster in the past

$$\frac{\hbar H_{\rm inf}}{E_{\rm P}} \sim \frac{10^{14} {\rm GeV}}{10^{19} {\rm GeV}} \sim 10^{-5}$$

Electromagnetism in de Sitter

Quantum corrections to electromagnetism in de Sitter

$$\partial_{\nu} \left[\sqrt{-g} g^{\mu\rho} g^{\nu\sigma} F_{\rho\sigma}(x) \right] + \int d^4x' \, \boldsymbol{i} \left[{}^{\boldsymbol{\mu}} \boldsymbol{\Pi}^{\boldsymbol{\nu}} \right] (\boldsymbol{x}; \boldsymbol{x'}) A_{\nu}(x') = J^{\mu}(x)$$

 \longrightarrow compute retarded vacuum polarization

QFT in curved space & nonequilibrium QFT — Schwinger-Keldysh formalism (in-in, closed-time-path)

Dimensional regularization

Leonard, Woodard, *Graviton Corrections to Vacuum Polarization during Inflation*, Class.Quant.Grav. 31 (2014) 015010, arXiv:1304.7265 [gr-qc]

Coulomb potential

Glavan, Miao, Prokopec, Woodard, *Electrodynamic Effects of Inflationary Gravitons*, Class.Quant.Grav. 31 (2014) 175002, arXiv: 1308.3453 [gr-qc]

$$\Phi(x) = \Phi^{(0)}(x) \left\{ 1 + \frac{\kappa^2 H^2}{8\pi^2} \times \left[\frac{1}{3(aHr)^2} + \ln(aHr) \right] \right\}$$

Dynamical photon

Wang, Woodard, *Excitation of Photons by Inflationary Gravitons*, Phys.Rev.D 91 (2015) 12, 124054, arXiv:1408.1448 [gr-qc]

$$F_{0i} = F_{0i}^{(0)} \left[1 + rac{\kappa^2 H^2}{8\pi^2} imes \ln(a)
ight]$$

Secular enhancement of electric field strength of a propagating photon.

Are these results physical? Are these results gauge-independent?

Conjecture: leading secular effects are gauge independent

Miao, Woodard, *Issues Concerning Loop Corrections to the Primordial Power Spectra*, JCAP 07 (2012) 008, arXiv:1204.1784 [astro-ph.CO]

First compute the vacuum polarization in a different gauge Glavan, Miao, Prokopec, Woodard, Graviton Loop Corrections to Vacuum Polarization in de Sitter in a General Covariant Gauge, Class.Quant.Grav. 32 (2015) 19, 195014, arXiv: 1504.00894 [gr-qc]

Solve again the effective field equation for the dynamical photon Glavan, Miao, Prokopec, Woodard, *One loop graviton corrections to dynamical photons in de Sitter*, Class.Quant.Grav. 34 (2017) 8, 085002, arXiv:1609.00386 [gr-qc]

$$F_{0i} = F_{0i}^{(0)} \left[1 + \frac{\kappa^2 H^2}{8\pi^2} \times \ln(a) \times \frac{1}{6} \left(45 - \frac{2ik}{H} + 5e^{2ik/H} \right) \right]$$

The coefficient does not agree!

 \longrightarrow construct one-loop quantum gravitational observables

Leading quantum gravitational corrections to long range forces derive from nonanalytic corrections to loop amplitudes Donoghue, *Leading quantum correction to the Newtonian potential*, Phys.Rev.Lett. 72 (1994) 2996-2999, arXiv:gr-qc/9310024 [gr-qc]

Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys.Rev.D 50 (1994) 3874-3888, arXiv:gr-qc/9405057 [gr-qc]

Donoghue, Torma, On the power counting of loop diagrams in general relativity, Phys.Rev.D 54 (1996) 4963-4972, arXiv:hep-th/9602121 [hep-th]

Bjerrum-Bohr, *Leading quantum gravitational corrections to scalar QED* Phys.Rev.D 66 (2002) 084023, arXiv: hep-th/0206236 [hep-th]

Gauge dependence drops out before forming the S-matrix Miao, Prokopec, Woodard, *Deducing Cosmological Observables from the S-matrix*, Phys.Rev.D 96 (2017) 10, 104029, arXiv:1708.06239 [gr-qc]

 \longrightarrow form effective self-mass/vacuum polarization and use it to quantum-correct field equations

Work in progress on observables

Extend this approach to de Sitter

Glavan, Miao, Prokopec, Woodard, *Gauge independent logarithms from inflationary gravitons*, JHEP 03 (2024) 129, arXiv:2402.05452 [hep-th]

Let us work out the SM physics and perturbative quantum gravity in inflation

- One-loop observables? [Fröb, Hack, Khavkine 1801.02632 [gr-qc] ; Fröb, Lima 2303.16218 [gr-qc], ...]
- Nonperturbative effects?
- Resummation methods?
- Nonequilibrium RG methods?
- Starobinsky's stochastic formalism?

What about corrections from subsequent periods?

Ota, Sasaki, Wang, *One-loop thermal radiation exchange in gravitational wave power spectrum*, arXiv:2310.19071 [astro-ph.CO]