

Searches for DiHiggs production in ATLAS

Babar Ali IEAP CTU in Prague

April 24, 2025

A Brief History of the Higgs Boson

Significant progress in our understanding of the Higgs boson since its discovery in 2012. All the main production modes established: ggF, VBF, VH, and ttH+tH

François Englert and Peter W. Higgs

But we still know very little about the shape of the Higgs potential.

Electroweak Symmetry Breaking

Directly measure λ_{HHH} via HH production Strength of λ_{HHH} relative to SM prediction $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{SM}$

Probing the Higgs self-coupling is key to understanding the shape of the potential

HH production at LHC

HH at the HL-LHC

σ_{HH} increases with √s 13 TeV → 13.6 TeV: +11% 13.6 TeV → 14 TeV: + 7 %

The challenges

Destructive interference between m_{HH} shape strongly depends on κ the triangle and box diagrams $\kappa_{\lambda} \sim 2.4$ max. destruction at $m_{HH} \sim 350$ GeV 0.14 Arbitrary units (dq] (HH ← dσ ATLAS Simulation g unnunner-Ref. SM: $\sigma_{qqF}(pp \rightarrow HH) = 31.05 \text{ fb}$ dm_{нн} 0.12 √s = 13 TeV σ_{ggF} (pp -0.1 $\cdots \kappa_{\lambda} = 0$ g $-\kappa_{\lambda} = 2$ Kt 0.08 $\kappa_{\lambda} = 1$ g .00000000000000 $--\kappa_{0} = 5$ 0.06 10 Kt 0.04 √s = 13 TeV 0.02 ggF (NNLO) Ref. 0 800 300 400 500 600 700 -20 -15 -10 -5 0 5 10 15 20 700 800 300 200 400 500 600 m_{нн} [GeV] κλ m_{HH} [GeV] Arbitrary units $\kappa_{2V} = 1$ ATLAS Simulation Preliminary $- C_{2V} = 0.0$ $C_{21} = 0.5$ $C_{2V} = 1.0$ Soft kinematics for large $|\kappa_{\lambda}|$ ullet0.1 c_{2v}=1.5 · c_{2V}=2.0

- decay production difficult to detect
- Hard kinematics for large $|\kappa_{2V}|$ ٠

Excellent experimental performance and advanced analysis techniques are crucial

0.08

0.06

0.04

0.02

200

400

600

800

1000

Set κ_{λ} =1.0 and c_{v} =1.0

1200 Mass of the HH system [GeV]

Ref.

1400

How do we search for HH production

Lar fracti	ge ions		bb	ww	ττ	ZZ	YY
		bb	34%				
		ww	25%	4.6%			
		ττ	7.3%	2.7%	0.39%		
		ZZ	3.1%	1.1%	0.33%	0.069%	
		YY	0.26%	0.10%	0.028%	0.012%	0.0005%

No single "golden channel"

Clean states

bbbb (34%):

- The most abundant final state
- Challenging multi-jet backgrounds

bbττ (7.3%): Happy medium

bbγγ (0.26%):

- Low decay fraction
- Excellent $m_{\gamma\gamma}$ resolution

All channels have trade-offs between branching ratios and backgrounds.

How do we search for HH production

No single "golden channel"

Large fractior	ns	bb	ww	ττ	ZZ	ΥY
L	bb	34%				
	ww	25%	4.6%			
L	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
	ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

Clean states

Multilepton (6.5%):

- Targeting all the other final states
- In total, 9 sub-channels

bb*ll* (2.9%)

Combining all the channels:

• Covering > 50% of HH decay

Object reconstruction highlights

All HH analyses are using same objects.

bbγγ <u>JHEP 01 (2024) 066</u>

Run: 329964 Event: 796155578 2017-07-17 23:58:15 CEST

D

bbyy selection and categorization

optimise for large value κ_{λ} (soft spectrum)

optimise for SM value κ_{λ} and κ_{2V} (hard spectrum)

HH and single H

Modelled by double-sided Crystal Ball function. Parameters estimated from MC

γγ-continuum

Modelled using exponential function. Parameters derived from data sideband

Dominant uncertainties:

- Data statistics
- ✤ Theory uncertainties on HH xsec

	High Mass 1	High Mass 2	High Mass 3	Low Mass 1	Low Mass 2	Low Mass 3	Low Mass 4
Total background	$12.8^{+1.6}_{-1.6}$	$3.7^{+0.9}_{-0.8}$	$3.4^{+0.8}_{-0.8}$	38.9 ^{+2.9} -2.9	$11.3^{+1.5}_{-1.5}$	$4.7^{+0.9}_{-1.0}$	$1.3^{+0.5}_{-0.5}$
Data	12	4	1	29	8	5	4

95% CL limit μ_{HH} < 4.0 (5.0 exp)

Run: 350013 Event: 1556168518 2018-05-11 01:39:26 CEST

bbbb

Resolved: <u>Phys. Rev. D 108 (2023) 052003</u> Boosted: <u>Phys. Lett. B 858 (2024) 139007</u>

bbbb selection and results

$$X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \text{ GeV}}{0.1 m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \text{ GeV}}{0.1 m_{H2}}\right)^2}$$
ggF & VBF categories based on | $\Delta \eta_{\text{HH}}$ | & X_{HH}

Major background:

 QCD multiJet estimated using NN transfer factor

Dominant uncertainties:

- ✤ Background estimation
- ✤ Signal cross section calculation

- Minimal ΔR_{jj} in leading Higgs (H1)
- No mass information used to avoid sculpting the H1-H2 mass plane

bbtt

Phys. Rev. D 110 (2024) 032012

Run: 339535 Event: 996385095 2017-10-31 00:02:20 CEST

bbtt selection and categorization

Background sources

Top quark Shape for MC, normalization from fit

 $Z \rightarrow \tau \tau$ + heavy flavor Shape for MC, normalization from $Z \rightarrow ee/\mu\mu$ + HF control region

Fake au_{had} Data-driven fake factor method

$$\label{eq:m_hh} \begin{split} m_{HH} &< 350 \ GeV - low-m_{HH} \\ m_{HH} &\geq 350 \ GeV - high-m_{HH} \end{split}$$

bbtt results

• BDT is trained in each signal region – 9 BDTs

bb*ll* + **E**_T**miss** <u>JHEP 02 (2024) 037</u>

$bb\ell\ell + E_T miss$ selection and results

MVA training against backgrounds

 \geq 2 VBF jets with pT > 30 GeV, max($\Delta \eta_{jj}$) > 4, max(m_{jj}) > 600 GeV **tt background** Shape for MC, normalization from control regions

Multilepton

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

- ~6.5% of HH events decay to final states where the HH system is not fully reconstructible.
- Categorise events based on number of light leptons, hadronic taus, and photon
- Single or dilepton triggers

Multilepton

- Backgrounds with prompt leptons estimated from MC.
- Processes with non-prompt or charge mis-ID light leptons, and mis-ID hadronic taus estimated using data-driven methods.
- Dominated by data statistics

HH combination

Phys. Rev. Lett. 133 (2024) 101801

HH production combination

95% CL limit $\mu_{HH} < 2.9 (2.4 \text{ exp})$ $\mu_{VBF} < 44.3 (47.5 \text{ exp})$

 $\sigma_{\rm HH}$ < 85.8 (71.1 exp) fb

deficit observed in bbbb, bb $\gamma\gamma$, bb $\ell\ell$ +E_Tmiss excess observed in bb $\tau\tau$, multilepton

- ✤ Dominant uncertainties: HH theory cross section uncertainty +6% -23% in scale + m_{top}
- Modelling of single H associated with b-jets
- Experimental uncertainties: 4b background estimation

Couplings: likelihood scans

HH in Effective Field Theories (HEFT)

- Effective Field Theories provide new physics in a model-independent.
- They help us explore the broader impact of new physics across various measurements.
- Introduce new couplings that are forbidden in the Standard Model.

HH search can put constraints to the coefficients

Ctth

Resonant production

- Many BSM models predict new particles that decay to a pair of Higgs bosons.
- Many models also predict additional Higgs-like scalars

Babar Ali

 $X \rightarrow HH$ and $X \rightarrow SH$ searches are closely connected to non-resonant HH searches, both in the physics they explore, and in their analyses.

HH in Run 3

• Improved object identification, b-tagging algorithms, dedicated triggers and many more refined analyses....

HH at the HL-LHC

- Combination of $bbbb + bb\tau\tau + bb\gamma\gamma$.
- HH discovery significance of 3.4σ ; κ_{λ} constrained within [0.0, 2.5] at 95% CL.
- Based on previous round of full Run 2 results.

- Sensitivity driven by theoretical uncertainties on HH cross-section.
- b-tag performance in bbbb, and background modelling uncertainty in bbγγ.
- additional heavy-flavour jet radiation in single Higgs background.

Summary

- DiHiggs production is a rare and unique process to probe the Higgs potential.
- Significant improvements in various aspects of the analyses compared to previous results.
- Excellent performance of ATLAS detector and LHC in Run 2.
- ATLAS searches for HH production in final states covering 50% of decays:
 - Reached the best expected sensitivity to date $\mu_{\text{HH}} < 2.9$ (2.4 exp.)
 - Higgs self-coupling $-1.2 < \kappa_{\lambda} 7.2 \ (-1.6 < \kappa_{\lambda} < 7.2 \ \text{exp.})$
- Promising prospects for both Run 3 and HL-LHC

Looking forward to exciting Higgs pair production results in the near future from Run 3 and the HL-LHC!

Backup

Multilepton selection

Channel	ℓ	$ au_{ m had-vis}$	Jets	<i>b</i> -jets
4 <i>l</i> +2 <i>b</i>	$ \begin{array}{ c c } & 4\ell(B) \\ & p_{T}(\ell_{1}) > 20 \text{ GeV} \\ & p_{T}(\ell_{2}) > 15 \text{ GeV} \\ & p_{T}(\ell_{3}) > 10 \text{ GeV} \\ & \ell_{3} \text{ or } \ell_{4} \text{ pass loose PLV} \\ & 2 \text{ SFOC pairs} \\ & 50 < m_{\text{on-shell}-\ell\ell}^{\text{SFOC}} < 106 \text{ GeV} \\ & 5 < m_{\text{off-shell}-\ell\ell}^{\text{SFOC}} < 115 \text{ GeV} \\ & \text{All 4 pairs } \Delta R(\ell_{i},\ell_{j}) > 0.02 \\ & m_{4\ell} - m_{Z} > 10 \text{ GeV} \\ \end{array} $	$N_{\tau} = 0$	$N_{\text{jet}} \ge 2$	$1 \le N_{b-jet} \le 3$
3ℓ	$\begin{aligned} & 3\ell, \text{ sum of charges} = \pm 1 \\ & \ell_{\text{OC}}(\text{L}) \\ & \ell_{\text{SC1}}(\text{T}), p_{\text{T}} > 15 \text{ GeV} \\ & \ell_{\text{SC2}}(\text{T}), p_{\text{T}} > 15 \text{ GeV} \\ & \text{All } m_{\ell\ell}^{\text{SFOC}} > 12 \text{ GeV} \\ & Z\text{-veto} \\ & m_{3\ell} - m_Z > 10 \text{ GeV} \end{aligned}$	$N_{\tau} = 0$	$N_{\rm jet} \ge 1$	N _{b-jet} = 0
2ℓSC	$2\ell(T), p_T > 20 \text{ GeV}, \text{SC}$ $m_{\ell\ell} > 12 \text{ GeV}$	$N_{\tau} = 0$	$N_{\text{jet}} \ge 2$	$N_{b-\text{jet}} = 0$
$2\ell SC + \tau_{had}$	$2\ell(T), p_T > 20 \text{ GeV}, \text{SC}$ $m_{\ell\ell} > 12 \text{ GeV}$	$N_{\tau} = 1$ $p_{\rm T} > 25 {\rm GeV}$ OC to ℓ	$N_{\text{jet}} \ge 2$	$N_{b-\text{jet}} = 0$
$2\ell + 2\tau_{had}$	$2\ell(L), OC$ $m_{\ell\ell} > 12 \text{ GeV}$ Z-veto	$N_{\tau} = 2, \text{ OC}$ $\Delta R(\tau_1, \tau_2) < 2$	$N_{\text{jet}} \ge 0$	$N_{b-\text{jet}} = 0$
ℓ +2 τ_{had}	1ℓ(L)	$N_{\tau} = 2, \text{OC}$ $\Delta R(\tau_1, \tau_2) < 2$	$N_{\rm jet} \ge 2$	$N_{b-\text{jet}} = 0$

Channel	<i>l</i>	$ au_{ m had-vis}$	Photons	$E_{ m T}^{ m miss}$	<i>b</i> -jets
$\gamma\gamma+2(\ell, \tau_{had})$	$ \begin{vmatrix} N_{\ell(\mathbf{P})} + N_{\tau} \\ m_{2(\ell,\tau)} > \end{vmatrix} $	= 2, OC 12 GeV	$N_{\gamma} = 2$ $E_{\rm T}(\gamma_1) > 35 { m GeV}$	$E_{\rm T}^{\rm miss}$ > 35 GeV	
$\gamma\gamma+\ell$	$ \mid N_{\ell(P)} = 1 $	$N_{\tau} = 0$	$105 \text{ GeV} < m_{\gamma\gamma} < 160 \text{ GeV}$ $\gamma_1 : p_T/m_{\gamma\gamma} > 0.35$ $\gamma_1 : p_T/m_{\gamma\gamma} > 0.25$	$\overline{\gamma\gamma+e: E_{\rm T}^{\rm miss} > 35{\rm GeV}} \\ \gamma\gamma+\mu: -$	$N_{b-\text{jet}} = 0$
$\gamma\gamma$ + τ_{had}	$\mid N_{\ell(P)} = 0$	$N_{\tau} = 1$	$\gamma_2: p_{\rm T}/m_{\gamma\gamma} > 0.25$	$E_{\rm T}^{\rm miss}$ > 35 GeV	

bbbb selection

Combined results

	Obs.	-2σ	-1σ	Exp.	+1 σ	+ 2σ	Exp. SM
$bar{b} au^+ au^-$	5.9	1.8	2.4	3.3	5.0	8.1	4.3
$bar{b}\gamma\gamma$	4.0	2.7	3.6	5.0	7.8	13	6.4
$bar{b}bar{b}$	5.3	4.3	5.8	8.1	12	19	9.1
Multilepton	17	6	8	11	17	27	12
$b\bar{b}\ell\ell + E_{\rm T}^{\rm miss}$	10	7	10	14	20	30	15
Combined	2.9	1.3	1.7	2.4	3.6	5.6	3.4

		Кд				ĸ	$\sqrt{2}V$		
Channel	68% CL		95% CL		68%	68% CL		95% CL	
	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	Obs.	Exp.	
$bar{b}\gamma\gamma$	$3.0^{+2.2}_{-2.5}$	$1.0^{+5.1}_{-2.2}$	[-1.4, 6.9]	[-2.9, 7.8]	1.1 ± 0.8	$1.0^{+1.5}_{-1.3}$	[-0.5, 2.7]	[-1.1, 3.3]	
$b\bar{b}\tau^{+}\tau^{-}$	$0.0^{+3.3}_{-1.7}$	$1.0^{+6.6}_{-2.0}$	[-3.2, 9.0]	[-2.5, 9.2]	$0.4^{+1.9}_{-0.5}$	$1.0^{+1.0}_{-0.8}$	[-0.5, 2.7]	[-0.2, 2.4]	
Multilepton	$[-4.4, 0.6] \cup [4.3, 9.8]$	$1.0^{+6.5}_{-3.4}$	[-6, 12]	[-4.5, 9.6]	$-0.4^{+4.1}_{-1.2}$	$1.0^{+2.1}_{-1.9}$	[-2.5, 4.6]	[-1.9, 4.1]	
$bar{b}bar{b}$	$5.8^{+3.0}_{-5.2}$	$1.0^{+7.9}_{-3.9}$	[-3,11]	[-5,11]	1.01 ± 0.23	$1.00^{+0.40}_{-0.37}$	[0.5, 1.5]	[0.4, 1.7]	
$b\bar{b}\ell\ell$ + $E_{\mathrm{T}}^{\mathrm{miss}}$	3 ± 6	1^{+12}_{-8}	[-6,13]	[-10, 17]	1.1 ± 0.7	$1.0^{+1.1}_{-1.0}$	[-0.2, 2.4]	[-0.5, 2.7]	
Combination	$3.8^{+2.1}_{-3.6}$	$1.0^{+4.7}_{-1.5}$	[-1.2, 7.2]	[-1.6, 7.2]	$1.02^{+0.22}_{-0.23}$	$1.00^{+0.40}_{-0.36}$	[0.6, 1.5]	[0.4, 1.6]	