From Beauty to Charm, From ATLAS to LHCb

Tomáš Jakoubek

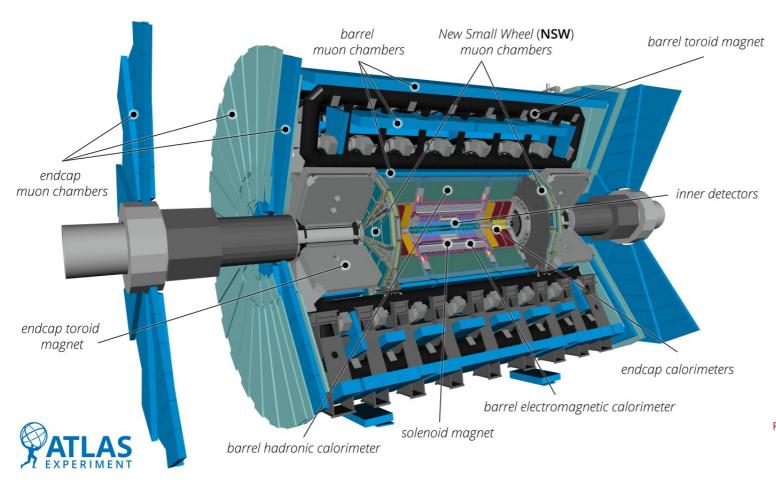
Seminar of Division of Elementary Particle Physics Institute of Physics of the Czech Academy of Sciences 6th November 2025, Prague

Heavy Flavour Physics

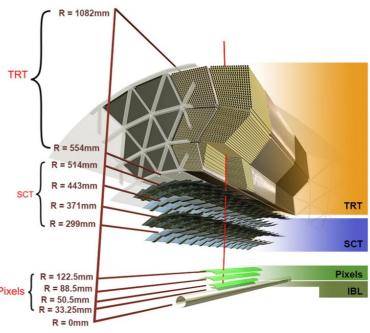
- What is flavour physics?
 - Studies transitions between different quark types (flavours) via weak interactions.
 - Sensitive to quantum loop effects → indirect probe of physics beyond the Standard Model (BSM).
- What is heavy flavour (HF) physics?
 - Physics of hadrons containing bottom (b) or charm (c) quarks.
 - Includes beauty-physics (*B*-physics) and charm-physics.
 - Focus on rare decays, CP violation (CPV), mixing, and lepton-flavour universality.
- Experiments:
 - **ATLAS**/CMS: Mainly high- p_{T} physics, but also HF programme large datasets.
 - **LHCb**: Dedicated heavy-flavour experiment; forward geometry, high resolution.
 - Belle II, BES III: e^+e^- environment; complementary reach.

Why Does HF Physics Matter?

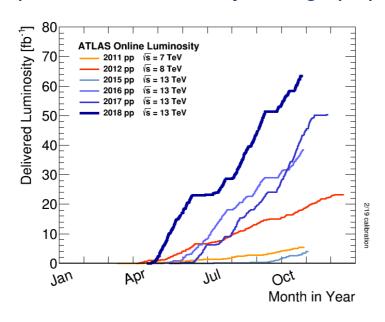
- First of all most of it is beauty :-)!
- Precision tests of the Standard Model (SM):
 - Measuring the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix.
 - B-hadron lifetimes can test our understanding of the weak interaction.
- Exploring CPV: matter-antimatter asymmetry.
- Hadron spectroscopy and exotics states.
- Heavy flavour production measurements.
- Probing New Physics (NP):
 - Indirect sensitivity to heavy new particles (e.g., through loop processes).
 - It complements direct searches!

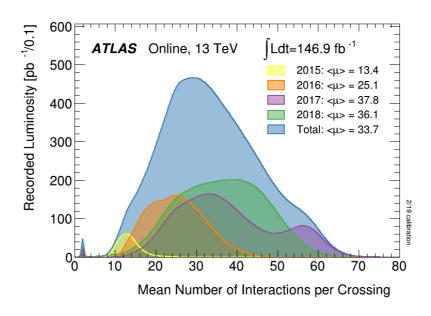


CERN, LHC... and the Key Points of Interest



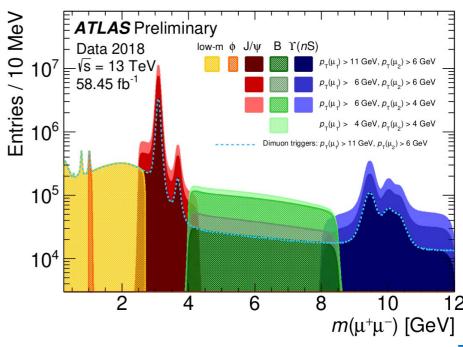
The ATLAS Experiment


- l = 44 m, d = 25 m, m = 7000 t.
- **IBL** for Run2, **NSW** for Run3.
- ID, MS, (EMCal).

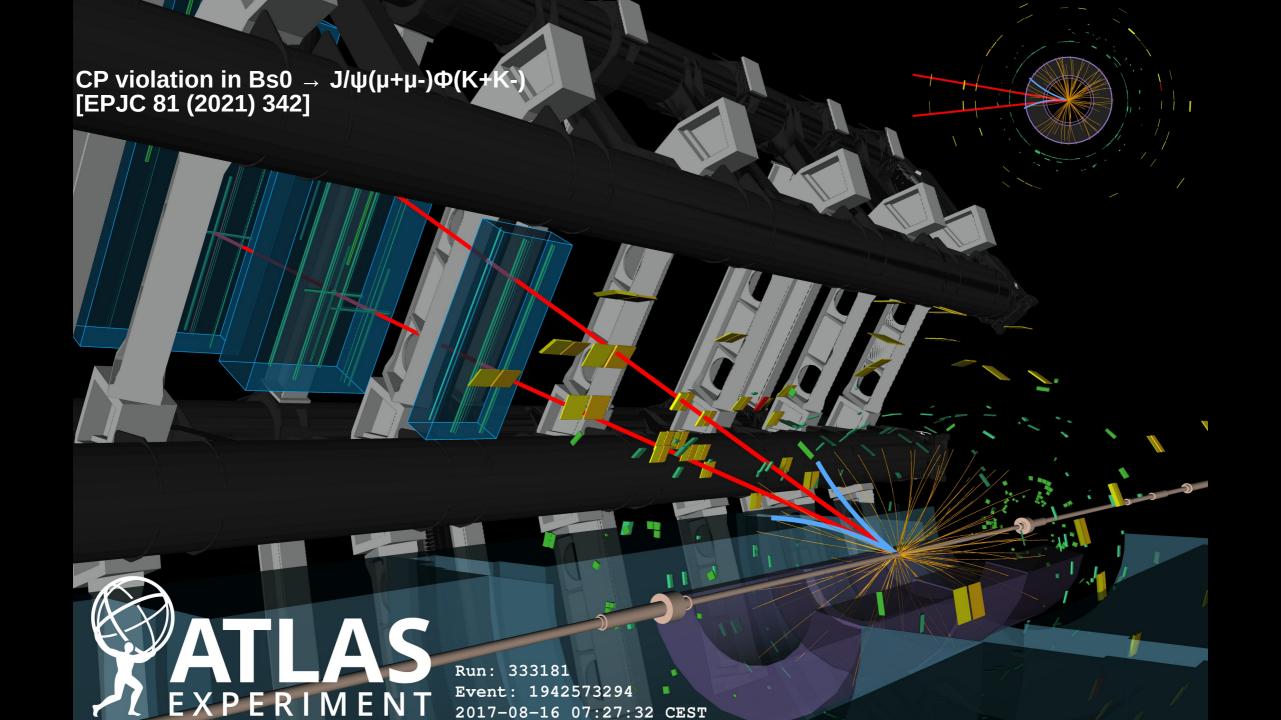


No "B" in ATLAS?

• General purpose detector, mainly for high- p_{T} physics...

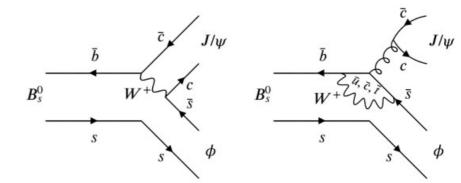


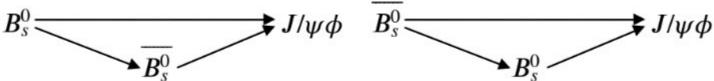
- Hard to live there, but it has some pros: ATLAS covers central $b\overline{b}$ production region, b-jet tracks are well separated, it can work at full LHC luminosity \rightarrow high statistics.
- See ATLAS B-physics public results!



ATLAS B-physics Triggers and Data

- Run 2: 139 fb⁻¹ of pp collisions at 13 TeV collected in 2015-2018 (Run 1: 25 fb⁻¹ at 7 and 8 TeV).
- Producing 2.5M $b\bar{b}$ pairs/second, B_s , B_c , Λ_b , etc. available.
- Focus mostly on final states with muons, fully reconstructable.
- Typical B-physics trigger:
 - Low-p_T di-muons at low invariant mass, using information from ID and MS.
 - Further topological (analysis-like) selections.
 - Rate up to \sim 200 Hz.
- In mid-2018, a low- p_T di-electron high-level trigger (HLT) implemented.





CPV in $B_s{}^0 \rightarrow J/\psi \Phi$: Introduction

- Decay $B_s^0 \rightarrow J/\psi \Phi$ is expected to be very sensitive to NP contributions to CPV.
- Neutral B_s^0 meson can oscillate into its antiparticle (and vice versa).

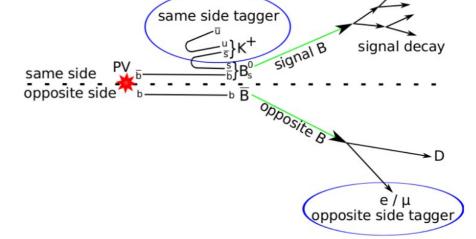
- The oscillation frequency is characterised by the mass difference Δm_s of the heavy (B_H) and light (B_L) mass eigenstates.
- In the absence of CPV, the B_H state would correspond to the CP-odd state and the B_L to the CP-even state.
- CPV in **interference of mixing and decay**: the common final state is reached via two different decay chains:

CPV in $B_s{}^0 \rightarrow J/\psi \Phi$: Motivation

- *CP*-violating phase is defined as the **weak phase difference** between the $B_s^0 \overline{B}_s^0$ mixing amplitude and the $b \to c\overline{c}s$ decay amplitude.
- In the SM it can be related to the CKM matrix

$$\phi_s \simeq -2\beta_s = -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right)$$

- Predicted with high precision: **-0.0376**^{+0.0006}_{-0.0005} **rad**.
- Any sizeable deviation from this value would be a sign of BSM physics.
- $B_s^0 \rightarrow J/\psi \Phi$: pseudoscalar to vector-vector final state \rightarrow admixture of *CP*-odd and *CP*-even states \rightarrow distinguishable through **time-dependent angular** analysis.



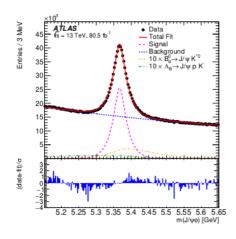
CPV in $B_s^0 \rightarrow J/\psi \Phi$: Fit in 5D

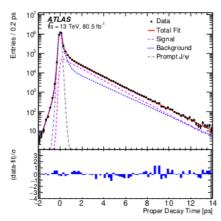
- Unbinned maximum likelihood (UML) fit to extract parameters of interest.
- Observables:
 - Mass, lifetime, 3 angles (between final state particles).
 - Conditional observables per-candidate:
 - Resolution: mass and lifetime (in 6 p_T bins)
 - B-meson p_T .
 - $B_{\rm s}^{0}$ flavour tagging probability.
- Physics parameters:
 - CPV phase Φ_s , decay widths: $\Delta\Gamma_s$, Γ_s .
 - Decay amplitudes: $|A_0(0)|^2$, $|A_{\parallel}(0)|^2$, δ_{\parallel} , δ_{\perp} .
 - S-wave: $|A_S(0)|^2$, δ_S .
 - Δm_s fixed to PDG.

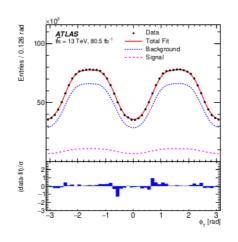
In
$$\mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_s \cdot \mathcal{F}_s(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), \rho_{T_i}) + f_s \cdot f_{B_d^0} \cdot \mathcal{F}_{B_d^0}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), \rho_{T_i}) + f_s \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), \rho_{T_i}) + (1 - f_s \cdot (1 + f_{B_d^0} + f_{\Lambda_b})) \cdot \mathcal{F}_{bkg}(m_i, t_i, \sigma_m, \sigma_t, \Omega_i, P(B|Q), \rho_{T_i})) \}$$

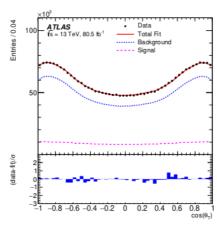
Dins)

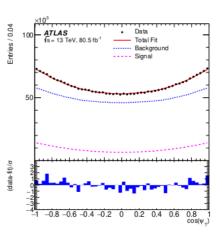
CPV in $B_s{}^0 \rightarrow J/\psi \Phi$: How to Get the PDFs*


*where PDF = Probability Density Function.

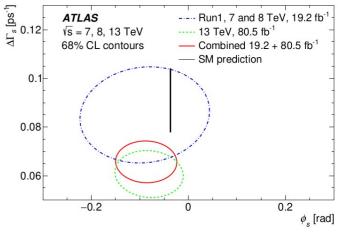

$$\frac{\mathrm{d}^4 \Gamma}{\mathrm{d}t \, \mathrm{d}\Omega} = \sum_{k=1}^{10} \mathcal{O}^{(k)}(t) g^{(k)}(\theta_T, \psi_T, \phi_T)$$


k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2\left[(1+\cos\phi_s)e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_s)e^{-\Gamma_{\rm H}^{(s)}t}\pm 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[\left(1+\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1-\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\mp2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2 \psi_T \sin^2 \theta_T$
4	$\frac{1}{2} A_0(0) A_{ }^{L}(0) \cos\delta_{ }$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\left[(1 + \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 - \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \pm 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$,-
5	$ A_{\parallel}(0) A_{\perp}(0) \frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}$	$-\sin^2\psi_T\sin2\theta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))]$	12
7	$\frac{1}{2} A_S(0) ^2\left[(1-\cos\phi_s)e^{-\Gamma_L^{(s)}t}+(1+\cos\phi_s)e^{-\Gamma_H^{(s)}t}\mp 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_S(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_L^{(s)}t}-e^{-\Gamma_H^{(s)}t})\sin(\delta_{\parallel}-\delta_S)\sin\phi_S$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin2\phi_T$
	$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos \phi_s \sin(\Delta m_s t))]$	
9	$\frac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
	$\left[(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)} t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)} t} \mp 2 e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t}-e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_S\sin\phi_S$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	



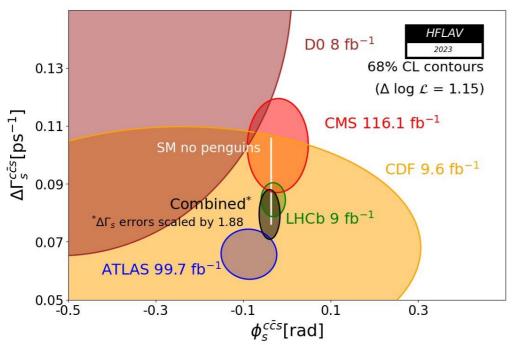

CPV in $B_s^0 \rightarrow J/\psi \Phi$: Results

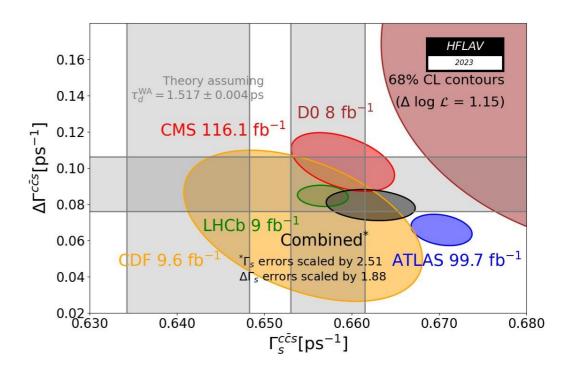




$$\phi_s = -0.087 \pm 0.036 \;\; ext{(stat.)} \pm 0.021 \;\; ext{(syst.)} \; ext{rad} \;\; ext{g} \ \Delta \Gamma_s = \;\; 0.0657 \pm 0.0043 \;\; ext{(stat.)} \pm 0.0037 \;\; ext{(syst.)} \; ext{ps}^{-1} \;\; ext{$ec s$} \ \Gamma_s = \;\; 0.6703 \pm 0.0014 \;\; ext{(stat.)} \pm 0.0018 \;\; ext{(syst.)} \; ext{ps}^{-1}$$

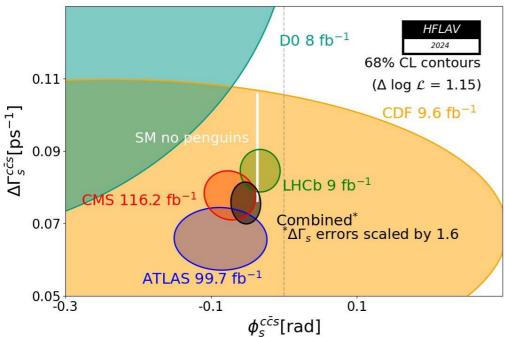
- Dominant systematics on Φ_s from tagging.
- Consistent with CMS, LHCb, and with the SM prediction.
- Still to add ~60 fb⁻¹ from 2018.

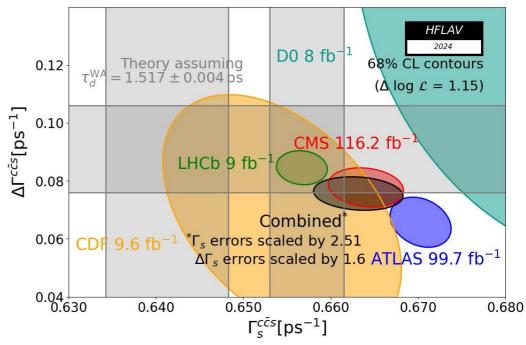




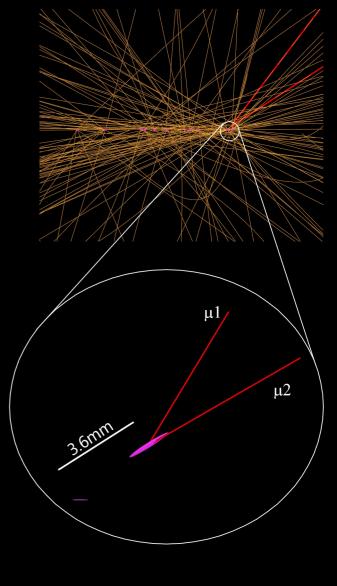
CPV in $B_s^0 \rightarrow J/\psi \Phi$: Comparison 1

- From HFLAV: -0.040 ± 0.016 rad.
- From SM: $-0.0376^{+0.0006}_{-0.0005}$ rad.

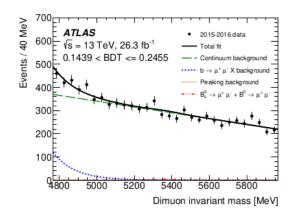


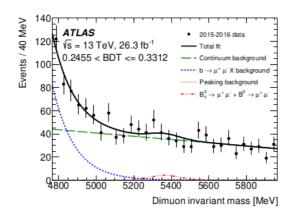


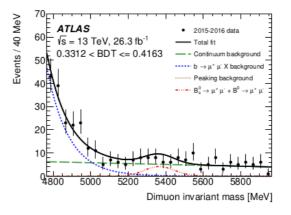
CPV in $B_s^0 \rightarrow J/\psi \Phi$: Comparison 2

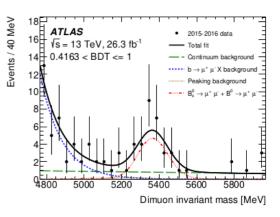

- From HFLAV: -0.052 ± 0.013 rad.
 - Including new CMS-BPH-23-004 (Submitted to PRL), 26 Dec 2024.
- From SM: $-0.0376^{+0.0006}_{-0.0005}$ rad.

Rare decays: $B_{(s)} \rightarrow \mu^{+}\mu^{-}$ [JHEP04(2019)098 and JHEP09(2023)199]

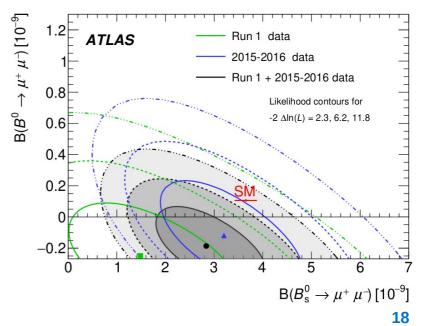



$\mathcal{B}(B_{(s)} \rightarrow \mu^+\mu^-)$: Motivation


- Flavour-changing neutral-current processes highly suppressed in the SM, B_(s) → μ⁺μ⁻ also helicity suppressed → B ~ 10⁻⁹.
- 36.2 fb⁻¹ dataset of 2015-2016 pp data taking, but effectively 26.3 fb⁻¹ for $B_{(s)} \rightarrow \mu^+ \mu^-$.
- $\mathcal{B}(B_{(s)} \to \mu^+ \mu^-)$ measurement relative to $\mathcal{B}(B^{\pm} \to J/\psi K^{\pm})$.
- $B_s^0 \rightarrow J/\psi \Phi$ as a control channel.
- BDT based background suppression, trained on sidebands data.
- Yields $N_{d,s}$ and $N_{J/\psi K\pm}$ obtained from UML fits to the mass spectra.



$\mathcal{B}(B_{(s)} \rightarrow \mu^{+}\mu^{-})$: Results



- Signal region divided into 4 BDT bins with constant signal efficiency.
- Simultaneous UML fit to di-muon mass distributions in the 4 BDT bins to extract $B_{(s)} \rightarrow \mu^+ \mu^-$ yields.
- Unconstrained yields: $N_s = 80 \pm 22$ and $N_d = -12 \pm 20$.
- SM expectation: $N_s = 91$ and $N_d = 10$.
- Run1 + Run2 (2015+2016) combined measurement compatible with SM at 2.4σ. Statistic uncertainties dominate.

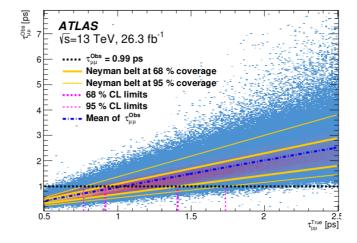
$B_s^0 \rightarrow \mu^+ \mu^-$ lifetime: Motivation

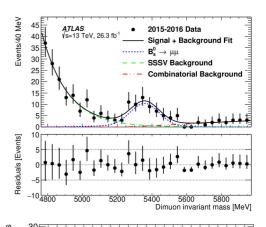
- *3* and **lifetime** measurements are **independent** tests of possible NP contributions.
- Not only is the decay rare...
- ... but in the SM only the **CP-odd** (heavy) state decays to $\mu^+\mu^-$.
- NP could introduce *CP*-even amplitudes with significant effects on effective lifetime:

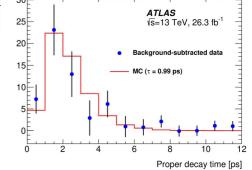
```
\tau(B_{\rm H}) = 1.622 \pm 0.008 \text{ ps},

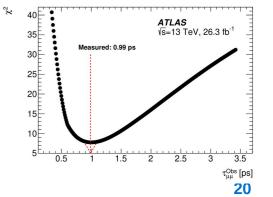
\tau(B_{\rm L}) = 1.429 \pm 0.006 \text{ ps},

\Delta \tau = 0.193 \text{ ps}.
```




$B_s^0 \rightarrow \mu^+ \mu^-$ lifetime: Results

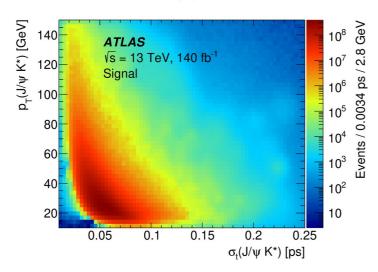

- Limited statistics → selection simplified to one BDT bin and BDT re-optimised.
- UML fit to $m(\mu^+\mu^-)$. Signal yield 58 ± 13 events.
- Extraction of the signal proper decay time distribution with sPlot.
- χ^2 fit of that distribution with MC templates for $\tau_{\mu\mu}$.
- Dominant systematics: signal MC modelling.
- Stat. unc. evaluated with Neyman construction using toyMC fits.
- Measured value consistent with the SM and other experiments:

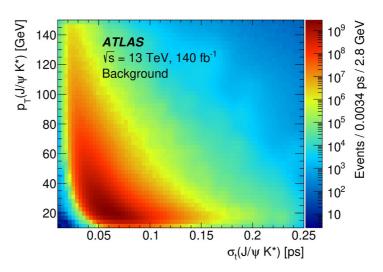

$$au_{\mu\mu} = 0.99^{+0.42}_{-0.07}(ext{stat.}) \pm 0.17(ext{syst.}) \, ext{ps}$$

Full Run2 dataset analysis underway.

$B^0 \rightarrow J/\psi K^{*0}$ lifetime: Motivation

- SM and BSM theories are capable to precisely calculate **ratios** τ_d/τ_s (or Γ_d/Γ_s) \rightarrow experiment needs to measure two lifetimes...
- ... and ATLAS has already published Γ_s measurement in the topologically similar $B_s{}^0 \rightarrow J/\psi \Phi$ (CPV measurement)!
- The most precise *B*-lifetime measurement:
 - Using full Run2 dataset ATLAS achieves 3 times better statistical precision than PDG.

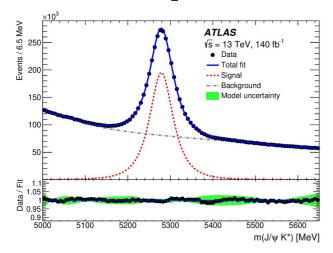

Model	Γ_d/Γ_s
HQE	1.003 ± 0.006
Lattice QCD	1.00 ± 0.02

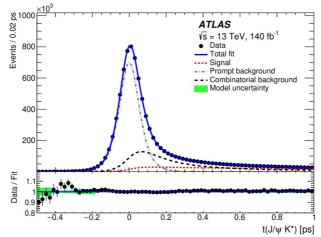


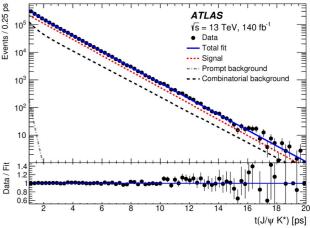
$B^0 \rightarrow J/\psi K^{*0}$ lifetime: The fit

- A bit tricky: no PID on ATLAS, but we need to assign $K^{\pm}\pi^{\mp}$ mass hypothesis.
- 2D unbinned maximum likelihood fit (mass, lifetime).
 - Conditional observables: lifetime resolution and *B*-meson p_T (**2D map** instead of 6 p_T bins).

$$\ln L = \sum_{i=1}^{N} w(t_i) \ln \left[f_{\text{sig}} \mathcal{M}_{\text{sig}}(m_i) \mathcal{T}_{\text{sig}}(t_i, \sigma_{t_i}, p_{\text{T}_i}) + (1 - f_{\text{sig}}) \mathcal{M}_{\text{bkg}}(m_i) \mathcal{T}_{\text{bkg}}(t_i, \sigma_{t_i}, p_{\text{T}_i}) \right]$$

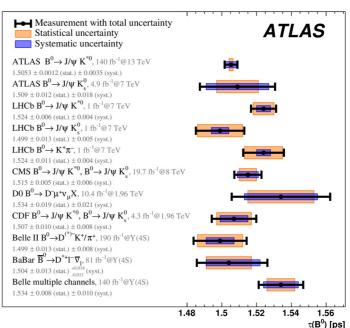





More than 10.5M B-meson candidates enter the fit!

$B^0 \rightarrow J/\psi K^{*0}$ lifetime: Results

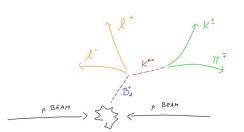
$$\tau_{R^0} = 1.5053 \pm 0.0012$$
 (stat.) ± 0.0035 (syst.) ps


Then using external sources (HFLAV):

$$\Gamma_d = 0.6639 \pm 0.0005 \text{ (stat.)} \pm 0.0016 \text{ (syst.)} \pm 0.0038 \text{ (ext.)} \text{ ps}^{-1}$$

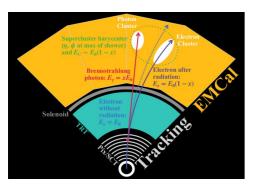
And using ATLAS CPV paper:

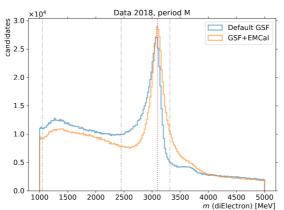
$$\frac{\Gamma_d}{\Gamma_s}$$
 = 0.9905 ± 0.0022 (stat.) ± 0.0036 (syst.) ± 0.0057 (ext.)

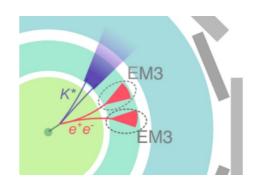


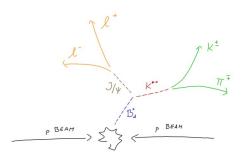
Measurement of...

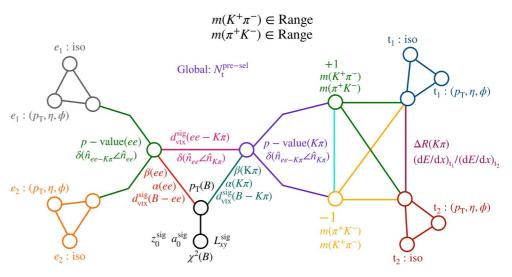
R(K*) Measurement

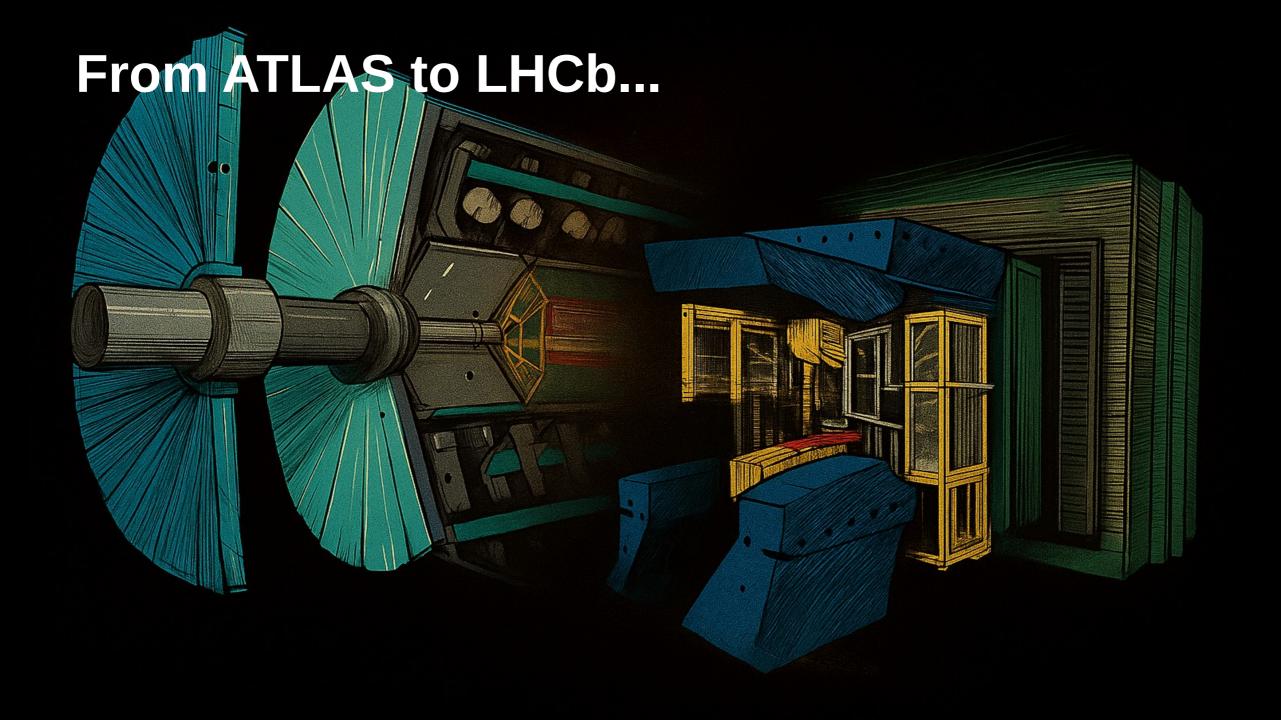


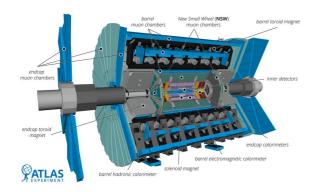


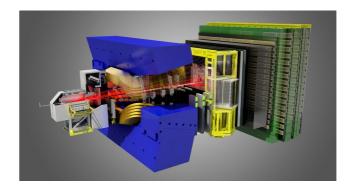

Measuring double-ratio to reduce systematic uncertainties


$$R(K^*) = \frac{\mathcal{B}(B_d^0 \to K^* \mu \mu)}{\mathcal{B}(B_d^0 \to K^* J/\psi(\to \mu \mu))} \cdot \frac{\mathcal{B}(B_d^0 \to K^* J/\psi(\to ee))}{\mathcal{B}(B_d^0 \to K^* ee)} \bigg|_{q^2}$$


- Finally a playground for new ideas!
 - "Un-seeded" low-p_T di-electron HLT.
 - Improved electron track reconstruction (GSF+EMCal).
 - Machine Learning (GNN).



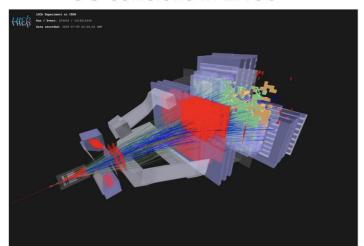


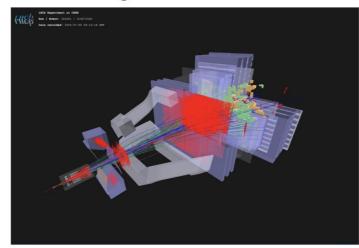


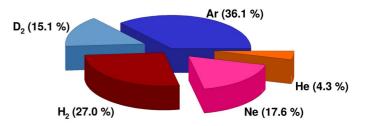
Why LHCb?

The story begins with a simple question...

- General-purpose, cylindrical geometry
- $|\eta| < 2.5$
- Broad physics: Higgs, top, SUSY...
- HW+SW trigger, high- p_T optimised
- No PID (well, it can tell muons and electrons)
- Maybe too conservative?

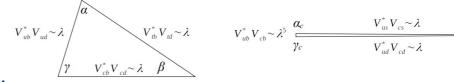

- Forward spectrometer, single-arm
- $2 < |\eta| < 5$
- B mixing, CPV, rare decays, B/D decays...
- All-SW trigger, HF optimised
- PID using RICH
- Open to new ideas a lot of potential!


A Small Step Aside: SMOG2


- LHCb is a simultaneous pp and fixed-target experiment!
- System for Measuring Overlap with Gas.
- Used both in pp runs and special runs.

OO collisions in LHCb

Fixed target collisions in SMOG

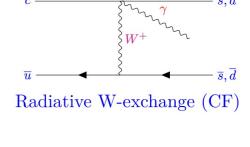


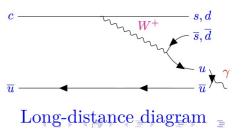
	Center of Mass Energy	Integrated Recorded Luminosity (/nb)
pO (collisions)	9.62 TeV	30.55
OO (collisions)	5.36 TeV	5.50
NeNe (collisions)	5.36 TeV	0.56
OH₂ (fixed target)	70.9 GeV	0.9
NeNe (fixed target)	70.9 GeV	0.023

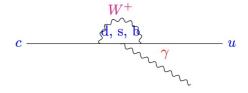
Why Charm?

- Largely **unexplored**: most experimental focus has been on beauty hadrons.
- **Challenging**: shorter lifetimes and higher backgrounds, but they open a new window for discovery.
- CPV is expected to be much smaller:
 - tiny CPV related to preferred charm processes,

$$V_{ub}^* V_{cb}^{\sim} \lambda^5 \stackrel{\boldsymbol{\alpha}_c}{=} V_{us}^* V_{cs}^{\sim} \lambda \qquad \qquad \boldsymbol{\beta}_c$$

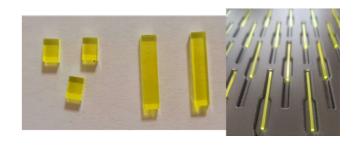

- larger asymmetries for suppressed (rare) decays.
- Though *charm* and *beauty* decays *can look similar*, their underlying quark transitions and loop dynamics differ, probing distinct couplings of possible new particles.
- Charm and beauty are complementary; both are needed for a full picture.
- With Run3 statistics and upgraded detectors, **precision charm** measurements have become feasible.




Radiative Charm Decays

• Very limited experimental data so far – only one notable measurement from Belle (e^+e^- collider).

- No results from hadron colliders yet!
- Search for signs of NP: measuring *CP*-asymmetry (A_{CP}) and y polarisation in $D^0 \rightarrow Vy$.
- Dominated by long-distance (~10⁻⁴).
- Sensitive to FCNC transition $c \rightarrow uy$ (short-distance contribution, ~10⁻⁸).
- Could get sizeable CPV in $D^0 \rightarrow \phi y$ and $D^0 \rightarrow \rho^0 y$.
 - _ Up to $A_{CP} \simeq 10^{-3}$ for the SM.
 - Could be enhanced by NP contributions.
- Sorry, no plots to show... but they would be m(Vy), $\cos \theta$ and $\Delta m = m(D^{*+}) m(D^{0})$.
 - With more background types than in ATLAS HF analyses ;-)
- Internal: LHCb Run2 factor of 2 improvement over Belle measurements.





Building a Czech LHCb Programme

- Technical Associate Institute since 2023:
 - Martin Nikl (dept. of Optical Materials) scintillator development.
 - Super-accelerated GAGG development and testing.
 - Actual reason for "radiative".
 - Collaboration with the Czech company CRYTUR.
 - 5 cm and 10 cm samples! LHCb interested (ECal Upgrade II)!
- Associate Institute^(*) since July 2025!
 - Group expected to grow in the next couple of years:
 - Already advertised undergraduate and PhD LHCb-related thesis projects.
 - Looking for a post-doc(s) (MSCA, MSCA-COFUND).
 - Interesting ideas for "what and <u>how</u>" to measure pitching first to the grant committee;-)

Test-beam @ CERN (Crystal Clear Collaboration) in 10/2024.

Summary

- HF results ~compatible with the SM more precision needed (Run3 and HL-LHC).
- Even though ATLAS is a general-purpose detector, it has competitive results in this field...
 - But the future there is not clear :-
- LHCb is the leading experiment in the field (so where else?)
 - New opportunities!

Thank you

Tomáš Jakoubek tomas.jakoubek@cern.ch

Name of the project: MSCA Fellowships CZ FZU III Registration number: CZ.02.01.01/00/22_010/0008598

