Energy spectrum of cosmic rays measured at the Pierre Auger Observatory and its low-energy extension

OBSERVATORY

Vladimír Novotný

Seminar of the Division of Elementary Particle Physics of the Institute of Physics of the CAS 24 September 2020

Motivation and outline

- all-particle energy spectrum of CR between 10¹⁵-10²⁰ eV

- transition from Galactic to extragalactic origin of CR particles
- changes in the mass composition of primaries
- now the Pierre Auger Observatory provides measurement using the same energy scale
 - 1) Detection methods used at the Pierre Auger Observatory
 - 2) Low-energy extension of the spectrum summary of PhD thesis*
 - 3) Recent results at the highest energies published 16 Semptember 2020 in PRL, PRD⁺

* Novotný V., Measurement of the energy spectrum of cosmic rays using Cherenkov-dominated data at the Pierre Auger Observatory, MFF UK, 2020

⁺ The Pierre Auger Collaboration, Features of the energy spectrum of cosmic rays above 2.5x10¹⁸ eV using the Pierre Auger Observatory, Physical Review Letters 125, 121106 (2020) (Editor's Suggestion)

⁺ The Pierre Auger Collaboration, A measurement of the cosmic ray energy spectrum above 2.5x10¹⁸ eV using the Pierre Auger Observatory, Physical Review D 102, 062005 (2020) (Editor's Suggestion)

Pierre Auger Observatory

- Surface detector (SD) - water-Cherenkov stations

- main array 1500 m spacing
- Infill array 750 m spacing, low energy extension

- Fluorescence detector (FD)

- 24 telescopes at 4 sites overlook SD horizontaly (FOV 0°-30° in elevation)
- 3 High Elevation Auger Telescopes (HEAT) near Infill (30°-60°), low energy extension
- hybrid measurement = FD+SD

Energy spectrum measurements

- Surface detector ontime ~100% \rightarrow larger statistics
- Fluorescence detector calorimetric energy → lower systematic uncertainty
- SD is calibrated to energies measured in $\mathsf{FD}-\mathsf{the}\ \mathsf{same}\ \mathsf{energy}\ \mathsf{scale}$
 - subset of events reconstructed in both FD and SD simultaneously
- 3 different SD measurements
 - SD 1500 vertical* main array S₃₈
 - SD 750 vertical Infill array S₃₅
 - SD 1500 horizontal main array N₁₉
- FD in hybrid reconstruction mode
 - time from SD used in the axis geometry fit
 - calibration and the hybrid spectrum
- FD in Cherenkov mode
 - developed in the PhD thesis
 - Cherenkov spectrum (from Cherenkov-dominated events)
- * new results discussed below

Reconstruction - surface detector vertical events

stations

 \vec{x}_i

- zenith angles 0°-60°
- dominated by EM component
- shower axis rec. from trigger times of statins
- shower size estimator S(1000) (LDF fit)
 - \rightarrow energy estimator S₃₈ (CIC method)

- Infill – S(1000) \rightarrow S(450), S₃₈ \rightarrow S₃₅, zenith < 40°

Reconstruction - surface detector horizontal events

- zenith > 60°
- signal dominated by muons deflected by geomagnetic field
- shower reconstruction uses simulated muon density maps (p@10¹⁹ eV) $\rho_s(\vec{r}, \theta, \phi)$
- N_{19} is the normalization factor in $\rho_m(\vec{r}) = N_{19}\rho_s(\vec{r}, \theta, \phi)$

 $zenith = 70^{\circ}$

zenith = 84°

- combined spectrum – evolution in time

- combined spectrum evolution in time
- 2007 the first result from the Pierre Auger Observatory data (array not finished)

- combined spectrum evolution in time
- 2011 decrease of the CR flux well measured above $5x10^{19}$ eV

- combined spectrum evolution in time
- 2015 energy scale updated + first results from the Infill array

- combined spectrum evolution in time
- 2017 decrease of the flux above $5x10^{19}$ eV measured in hybrid data

- combined spectrum evolution in time
- 2019 2nd knee measured result of the Cherenkov analysis

- combined spectrum evolution in time
- 2019 2nd knee measured result of the Cherenkov analysis
- 2020 further decrease of the energy threshold result of the PhD thesis

- 2020 combination of 5 different methods
- Cherenkov spectrum low energy extension in the range $10^{15.5} 10^{18.1} \text{ eV}$

Differences between FD and SD analyses

Surface detector

- + larger statistics
 - exposure calculated geometrically
- - worse energy resolution
- + ~100% trigger efficiency above threshold
- - biases due to uncertain CR composition below threshold

Fluorescence detector

- - lower statistics (ontime ~13% wrt. SD)
 - exposure calculated from Monte Carlo simulations
- + better energy resolution
- + biases due to uncertain CR composition under control lower energies accessible

Fluorescence detector in Cherenkov regime

- + lower detection threshold
- - exposure limited to showers pointing towards FD telescopes
 - shower reconstruction without SD

Cherenkov radiation from EAS

- collimated around shower axis
- produced by charged particles dominated by **electrons+positrons**
 - recalculation to energy deposit from MC
 - amount of light calculated analytically lower systematic uncertainty
- particles in shower are scattered emission also outside of the inner Cherenkov cone

Cherenkov radiation from EAS

- collimated around shower axis
- produced by charged particles dominated by **electrons+positrons**
 - recalculation to energy deposit from MC
 - amount of light calculated analytically lower systematic uncertainty
- particles in shower are scattered emission also outside of the inner Cherenkov cone

typical range of viewing angles of the Cherenkov-dominated events at Auger

Cherenkov-dominated events

- **calorimetric energy** (E_{cal}) integral of the longitudinal profile
- information about shower is **compressed in time** consequence of the shower geometry
 - detector effects are important
- total energy correction for the invisible energy (E_{inv})
 - its fraction increases with decreasing energy
 - model of E_{inv} used at Auger above 10^{17} eV prolongated down to 10^{15} eV in the thesis
 - IceTop data measurement of the muon density on the ground

Reconstruction - fluorescence detector

- shower axis geometry

- hybrid rec. standard for fluorescence events
- profile-constrained geometry fit (PCGF) useful for Cherenkov-dominated events
- SD rec. better precision for distant showers

- reconstruction of longitudinal profile

- Cherenkov-Fluorescence Matrix (CFM)
- possible only for FD measurements

Definition of shower axis geometry

Profile-constrained geometry fit

Inside SDP

Problem in monocular reconstruction

Profile-constrained geometry fit

Problem in monocular reconstruction

- detection of Cherenkov radiation is sensitive to shower geometry

Inside SDP

Cherenkov-dominated data

- HEAT + Coihueco telescopes
 - fully triggered T3 trigger, merged HECO station
 - minimum bias data TLT trigger, HEAT only, 10% of events stored
 - used in analysis for the first time
 - triggers intentionally developed to suppress Cherenkov-dominated events

- data after all detector, atmosphere and quality cuts

Exposure

- detector sensitivity to showers at given energy integrated in time, area and solid angle
- calculated with the use of realistic Monte Carlo simulations
 - shower development
 - atmosphere properties
 - detector status
- depends on CR mass composition differences below 10\%
- energy spectrum ratio of the data distribution and exposure

Correction for detector effects

- finite detector resolution migration of reconstructed events between energy bins
 - dominated by the reconstruction resolution
- forward folding correction used at Auger
 - fit of the parametrized spectrum to the data functional form needed*
 - bin-by-bin correction factors ratio of thrown and forward-folded spectrum

Energy spectrum from Cherenkov-dominated data

- measurement of the 2nd knee at Auger
- very good agreement with SD 750 spectrum

flux in logarithmic scale

flux in linear scale

Systematic uncertainties

- energy scale 15% in energy
 - most important is the uncertainty in absolute calibration of PMTs
- mass composition of CR
 - causes uncertainty in exposure
- exposure
 - dominated by energy scale uncertainty (secondary effect) solved by fidutial volume cuts
- total uncertainty in flux 30-60%
 - dominated by propagated energy scale uncertainty

syst. uncertainties as ratios of the flux

Quantity	Uncertainty
FD calibration	9.9%
fluorescence yield	3.6%
Cherenkov emission model	3%
atmosphere	3.4%
FD profiles reconstruction	6.5%
FD energy bias	2.5%
energy scale stability	5%
invisible energy	4%
total	15%

uncertainties in energy scale

Characteristics of the energy spectrum

- fit by broken power law function
- red region at 95% CL
- 3 spectral indices, 2 breaks and normalization
- 2nd knee ~ 10^{17.2} eV

Comparison with other experiments

- TALE (Telescope Array) FD telescopes, similar method like Auger
- surface arrays of Cherenkov/scintilator detectors
- non-imaging Cherenkov detectors
- 2nd vs. 1st knee ~ $1.6x10^{17}$ eV / $5x10^{15}$ eV ~ 31 similar to charge ratio Fe / p ~ 26
 - region interpreted as the end of the Galactic CR spectrum

- significant flattenig between 1.5x10¹⁹ – 5x10¹⁹ eV (3)

- described as a smooth cutoff in the past

- 215 030 events in total

- exposure of 60 400 km² sr yr

- energy independent

parameter	value $\pm \sigma_{stat.} \pm \sigma_{sys.}$
J_0 [km ⁻² sr ⁻¹ yr ⁻¹ eV ⁻¹]	$(1.315 \pm 0.004 \pm 0.400) \times 10^{-18}$
γ1	$3.29 \pm 0.02 \pm 0.10$
γ2	$2.51 \pm 0.03 \pm 0.05$
γ ₃	$3.05 \pm 0.05 \pm 0.10$
γ4	$5.1 \pm 0.3 \pm 0.1$
E ₁₂ [eV] (ankle)	$(5.0 \pm 0.1 \pm 0.8) \times 10^{18}$
E ₂₃ [eV]	$(13 \pm 1 \pm 2) \times 10^{18}$
E ₃₄ [eV] (suppression)	$(46 \pm 3 \pm 6) \times 10^{18}$
D/n _{dof}	17.0/ 12

- combined fit of X_{max} distributions and spectrum

- contradicts pure proton scenario
- includes propagation effects and source pars. some freedom in model
- steepening above 5x10¹⁹ eV from maximum
 - energy of acceleration and GZK
- steepening above 10^{19} eV from interplay
 - between He and CNO different injection energies and propagation

- no declination dependence except the one expected from the dipole contribution

expectation from dipole

updated calibration

35

AugerPrime upgrade - ongoing

- goal is to distinguish EM from muonic part of the EAS signal in SD
 - possibility of mass-constrained anisotropy studies
 - better tests of HE hadronic interaction models
- main upgrades:
 - scintilator detectors atop of WCD stations
 - measurement of the EM part, WCD sensitive to both parts -> subtraction possible
 - useful for vertical showers (limited detection area of plate scintillators)
 - radio antennas attached to WCD stations
 - also measure EM part
 - useful for horizontal showers (larger radio footprint on the ground)
 - extended FD uptime with the use of low-gain setting
 - extend X_{max} measurements to higher energies

plus AMIGA in Infill - burried scintilators

Conclusions

- Pierre Auger Observatory measures energy specturm of CR between 10^{15.5}-10²¹ eV

- 5 methods used Cherenkov, SD 750 Infill, hybrid, SD 1500 vertical, SD 1500 inclined
- 5 breaks in energy spectrum + 6 spectral indices
- analysis of **Cherenkov-dominated data** covers the low energy range (10^{15.5}-10^{18.1} eV)
 - first measurement of 2nd knee at Auger
- new results at the highest energies
 - flattening of the spectrum between 1.5×10^{19} - 5×10^{19} eV
 - disagreement between TA and Auger spectrum at the highest energies still present

Backup

Low energy spectrum characteristics

fit parameters

Correction for detector effects

- result of the forward folding fit

Time stability

- two time periods with the same number of events
 - each has half of the total exposure
- difference below 10¹⁶ eV caused by increasing uncertainty in exposure?

Precision of the energy reconstruction

Angular resolution

- resolution better then 1°

- outliers at high energies - contamination by fluorescence events

Compatibility of the MC and data

 χ_o parameter

azimuth

Invisible energy and muon problem

- invisible energy ~ energy in muons
- muon problem HE interaction models do not describe well muon numbers at high energies
 - lower invisible energy in models is interpreted as a lack of muons in models

Systematic uncertainties of other experiments

- IceTop and KASCADE-GRANDE HE interaction model dependent
 - add ca. 30-40% (and no model describes showers well)
- Yakutsk 32% in energy
- Tibet "few tens of %"
- Tunka does not present any value

Outlook of Cherenkov spectrum publication Absolute Calibration

- presented at ICRC 2019 above 10^{16.5} eV

- to be solved by ongoing XY-scanner calibration campaign

first/second half of the data

- tel. 3 currently removed from Cherenkov analysis

- troubles with calibration of HEAT tel. 3

ឡា 5.0 2.5 ð 5.0 2.5 ⁶O 5.0 2.5 H 5.0 2.5 CH 5.0 EH 5.0 2.5 01.01.2011 01.01.2012 01.01.2013 01.01.2014 01.01.2015 01.01.2016 01.01.2017 01.01.2018 01.01.2019 01.01.2020

Fiducial volume cuts

- a change in the energy scale changes the evaluation of simulated exposure
- epsilon = detection efficiency = trigger + selection efficiency = N_{det}/N_{MC}
- use only sims/data that would be detected regardless of the energy scale -> no change in exposure

- energy scale changes within its systematic uncertainty (15%)

$$(\Delta \mathcal{E})_i = 1 - \frac{\mathcal{E}_{i-1}}{\mathcal{E}_i}.$$

Fiducial volume cuts

