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Motivation and outline
- all-particle energy spectrum of CR between 1015-1020 eV

- transition from Galactic to extragalactic origin of CR particles

- changes in the mass composition of primaries

- now the Pierre Auger Observatory provides measurement using the same energy scale

1) Detection methods used at the Pierre Auger Observatory

2) Low-energy extension of the spectrum – summary of PhD thesis*

3) Recent results at the highest energies – published 16 Semptember 2020 in PRL, PRD+

* Novotný V., Measurement of the energy spectrum of cosmic rays using Cherenkov-dominated data at the Pierre Auger Observatory,
MFF UK, 2020

+ The Pierre Auger Collaboration, Features of the energy spectrum of cosmic rays above 2.5x1018 eV using the Pierre Auger Observatory, 
Physical Review Letters 125, 121106 (2020) (Editor's Suggestion) 

+ The Pierre Auger Collaboration, A measurement of the cosmic ray energy spectrum above 2.5x1018 eV using the Pierre Auger Observatory,
Physical Review D 102, 062005 (2020) (Editor's Suggestion) 
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Pierre Auger Observatory
- Surface detector (SD) - water-Cherenkov stations

- main array – 1500 m spacing

- Infill array – 750 m spacing, low energy extension

- Fluorescence detector (FD)

- 24 telescopes at 4 sites – overlook SD horizontaly (FOV 0°-30° in elevation)

- 3 High Elevation Auger Telescopes (HEAT) – near Infill (30°-60°), low energy extension

- hybrid measurement = FD+SD
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HEAT
FD – Los Leones
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Energy spectrum measurements

- Surface detector – ontime ~100% → larger statistics

- Fluorescence detector – calorimetric energy → lower systematic uncertainty

- SD is calibrated to energies measured in FD – the same energy scale

- subset of events reconstructed in both FD and SD simultaneously

- 3 different SD measurements

- SD 1500 vertical* – main array – S
38

- SD 750 vertical – Infill array – S
35

- SD 1500 horizontal – main array – N
19

- FD in hybrid reconstruction mode

- time from SD used in the axis geometry fit

- calibration and the hybrid spectrum

- FD in Cherenkov mode

- developed in the PhD thesis

- Cherenkov spectrum (from Cherenkov-dominated events)

- * new results discussed below
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Reconstruction - surface detector
vertical events

- zenith angles 0°-60°

- dominated by EM component

- shower axis rec. from trigger times of statins

- shower size estimator S(1000) (LDF fit)

→ energy estimator S
38

 (CIC method)

- Infill – S(1000) → S(450), S
38

 → S
35

, zenith < 40°

38° (normalized)
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Reconstruction - surface detector
horizontal events

- zenith > 60°

- signal dominated by muons – deflected by geomagnetic field

- shower reconstruction uses simulated muon density maps (p@1019 eV) -

- N
19

 is the normalization factor in 

ρs( r⃗ ,θ , ϕ)

zenith = 70° zenith = 84°

shower plane = perpendicular to shower axis

B
GMF

ρm( r⃗ )=N 19ρs( r⃗ ,θ ,ϕ)
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Auger energy spectrum

- combined spectrum – evolution in time
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- combined spectrum – evolution in time

- 2007 - the first result from the Pierre Auger Observatory data (array not finished)

Auger energy spectrum
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- combined spectrum – evolution in time

- 2011 – decrease of the CR flux well measured above 5x1019 eV

Auger energy spectrum
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- combined spectrum – evolution in time

- 2015 – energy scale updated + first results from the Infill array

Auger energy spectrum
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- combined spectrum – evolution in time

- 2017 – decrease of the flux above 5x1019 eV measured in hybrid data

Auger energy spectrum
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- combined spectrum – evolution in time

- 2019 - 2nd knee measured - result of the Cherenkov analysis

Auger energy spectrum
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- combined spectrum – evolution in time

- 2019 - 2nd knee measured - result of the Cherenkov analysis

- 2020 – further decrease of the energy threshold – result of the PhD thesis

Auger energy spectrum
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- 2020 – combination of 5 different methods

- Cherenkov spectrum – low energy extension in the range 1015.5 – 1018.1 eV

Auger energy spectrum
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Differences between FD and SD analyses

Surface detector
- larger statistics

- exposure calculated geometrically

- worse energy resolution

- ~100% trigger efficiency above threshold

- biases due to uncertain CR composition below threshold

Fluorescence detector
- lower statistics (ontime ~13% wrt. SD)

- exposure calculated from Monte Carlo simulations

- better energy resolution

- biases due to uncertain CR composition under control – lower energies accessible

Fluorescence detector in Cherenkov regime
- lower detection threshold

- exposure limited to showers pointing towards FD telescopes

- shower reconstruction without SD

+

-

+

-

-

+

+

+

-
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Cherenkov radiation from EAS

- collimated around shower axis

- produced by charged particles – dominated by electrons+positrons

- recalculation to energy deposit from MC

- amount of light calculated analytically – lower systematic uncertainty

- particles in shower are scattered – emission also outside of the inner Cherenkov cone

(s - shower age)
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Cherenkov radiation from EAS

- collimated around shower axis

- produced by charged particles – dominated by electrons+positrons

- recalculation to energy deposit from MC

- amount of light calculated analytically – lower systematic uncertainty

- particles in shower are scattered – emission also outside of the inner Cherenkov cone

typical range of viewing angles of the Cherenkov-dominated events at Auger

(s - shower age)

range of IACT



19

Cherenkov-dominated events

- calorimetric energy (E
cal

) – integral of the longitudinal profile

- information about shower is compressed in time – consequence of the shower geometry

- detector effects are important

- total energy – correction for the invisible energy (E
inv

)

- its fraction increases with decreasing energy

- model of E
inv

 used at Auger above 1017 eV prolongated down to 1015 eV in the thesis

- IceTop data – measurement of the muon density on the ground

longitudinal profile E
inv

 – invisible energy
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- shower axis geometry

- hybrid rec. - standard for fluorescence events

- profile-constrained geometry fit (PCGF) - useful for Cherenkov-dominated events

- SD rec. - better precision for distant showers

- reconstruction of longitudinal profile

- Cherenkov-Fluorescence Matrix (CFM)

- possible only for FD measurements

Reconstruction - fluorescence detector
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Definition of shower axis geometry
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Profile-constrained geometry fit

Problem in monocular reconstruction

at T
0

χ
0

Inside SDP
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- PCGF:
- scan in χ

0

- R
p
 and T

0
 from time fit→ trial geometry

- longitudinal profile from CFM
- OK → possible geometry
- not OK → wrong geometry

- the most likely geometry chosen

- the best performance for Cherenkov-dominated events
- detection of Cherenkov radiation is sensitive to shower geometry

at T
0

χ
0

d
E

/d
X

X

Problem in monocular reconstructionInside SDP

Profile-constrained geometry fit
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Cherenkov-dominated data

- HEAT + Coihueco telescopes

- fully triggered – T3 trigger, merged HECO station

- minimum bias data – TLT trigger, HEAT only, 10% of events stored

- used in analysis for the first time

- triggers intentionally developed to suppress Cherenkov-dominated events

- data after all detector, atmosphere and quality cuts
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Exposure

- detector sensitivity to showers at given energy – integrated in time, area and solid angle

- calculated with the use of realistic Monte Carlo simulations

- shower development

- atmosphere properties

- detector status

- depends on CR mass composition – differences below 10%

- energy spectrum – ratio of the data distribution and exposure

exposure dependence on mass composition
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Correction for detector effects
- finite detector resolution – migration of reconstructed events between energy bins

- dominated by the reconstruction resolution

- forward folding – correction used at Auger

- fit of the parametrized spectrum to the data – functional form needed*

- bin-by-bin correction factors – ratio of thrown and forward-folded spectrum

J (E)=J0 (
E
E12

)
−γ1

∏
i=1

3 1+(E /Ei ,i+1)
−γ i

1+(E/E i ,i+1)
−γ i+13x energies of breaks, 4x spectral indices, normalization

migration matrix correction factors

*
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Energy spectrum from Cherenkov-dominated data

- measurement of the 2nd knee at Auger

- very good agreement with SD 750 spectrum

raw vs. unfolded comparison with SD 750

2x1024

flux in logarithmic scale flux in linear scale

1024



28

Systematic uncertainties

- energy scale – 15% in energy

- most important is the uncertainty in absolute calibration of PMTs

- mass composition of CR

- causes uncertainty in exposure

- exposure

- dominated by energy scale uncertainty (secondary effect) – solved by fidutial volume cuts

- total uncertainty in flux 30-60%

- dominated by propagated energy scale uncertainty

syst. uncertainties as ratios of the flux uncertainties in energy scale
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Characteristics of the energy spectrum

- fit by broken power law function

- red region at 95% CL

- 3 spectral indices, 2 breaks and normalization

- 2nd knee ~ 1017.2 eV

4x1037

1038

16.30

17.22

3.26
2.91

3.36

– spectral index
– position of break
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Comparison with other experiments

- TALE (Telescope Array) – FD telescopes, similar method like Auger

- surface arrays of  Cherenkov/scintilator detectors

- non-imaging  Cherenkov detectors

- 2nd vs. 1st knee ~ 1.6x1017 eV / 5x1015 eV ~ 31 similar to charge ratio Fe / p ~ 26

- region interpreted as the end of the Galactic CR spectrum

1038

4x1037
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Recent results at the highest energies

- significant flattenig between 1.5x1019 – 5x1019 eV   3

- described as a smooth cutoff in the past

- 215 030 events in total
- exposure of 60 400 km2 sr yr

- energy independent
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Recent results at the highest energies

- combined fit of X
max

 distributions and spectrum

- contradicts pure proton scenario
- includes propagation effects and source pars. - some freedom in model
- steepening above 5x1019 eV from maximum 

energy of acceleration and GZK
- steepening above 1019 eV from interplay

between He and CNO - different injection energies and propagation
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Recent results at the highest energies
- no declination dependence except the one expected from the dipole contribution

expectation from dipole



34

Recent results at the highest energies

- focused on energies above 2.5x1018 eV

- SD vertical analysis from main array

- description of the detector needed also      
below full detection efficiency threshold

- bin-to-bin migrations

- energy resolution and biases estimated from data

updated calibration
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Recent results at the highest energies

unfolding correction factors
systematic uncertainties
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AugerPrime upgrade - ongoing
- goal is to distinguish EM from muonic part of the EAS signal in SD

- possibility of mass-constrained anisotropy studies
- better tests of HE hadronic interaction models

- main upgrades:
- scintilator detectors atop of WCD stations

- measurement of the EM part, WCD sensitive to both parts -> subtraction possible
- useful for vertical showers (limited detection area of plate scintillators)

- radio antennas attached to WCD stations
- also measure EM part
- useful for horizontal showers (larger radio footprint on the ground)

- extended FD uptime with the use of low-gain setting
- extend X

max
 measurements to higher energies

plus AMIGA in Infill - burried scintilators
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Conclusions

- Pierre Auger Observatory measures energy specturm of CR between 1015.5-1021 eV

- 5 methods used – Cherenkov, SD 750 Infill, hybrid, SD 1500 vertical, SD 1500 inclined

- 5 breaks in energy spectrum + 6 spectral indices

- analysis of Cherenkov-dominated data covers the low energy range (1015.5-1018.1 eV)

- first measurement of 2nd knee at Auger

- new results at the highest energies

- flattening of the spectrum between 1.5x1019-5x1019 eV

- disagreement between TA and Auger spectrum at the highest energies still present
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Backup
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Low energy spectrum characteristics
fit parameters
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Correction for detector effects

- result of the forward folding fit

fitted function compatibility with the data distribution, p
χ2

 = 0.68
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Time stability

- two time periods with the same number of events

- each has half of the total exposure

- difference below 1016 eV caused by increasing uncertainty in exposure?
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Precision of the energy reconstruction

bias < 5% in energy

Reflected in the migration matrix distribution of differences in log
10

(E/eV)
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Angular resolution

- resolution better then 1°
- outliers at high energies - contamination by fluorescence events
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Compatibility of the MC and data

χ
0
 parameter azimuth
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Fig. 3.1Fig. 3.2

- invisible energy ~ energy in muons

- muon problem - HE interaction models do not describe well muon numbers at high energies

- lower invisible energy in models is interpreted as a lack of muons in models

Invisible energy and muon problem
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- IceTop and KASCADE-GRANDE - HE interaction model dependent
- add ca. 30-40% (and no model describes showers well)

- Yakutsk - 32% in energy
- Tibet - „few tens of %“
- Tunka does not present any value

Systematic uncertainties of other experiments
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lo

g
10

(E
ca

l/e
V

)>

- presented at ICRC 2019 above 1016.5 eV

- troubles with calibration of HEAT tel. 3

- to be solved by ongoing XY-scanner calibration campaign

- tel. 3 currently removed from Cherenkov analysis

first/second half of the data

GPS second

log
10

(E
cal

/eV) log
10

(E
cal

/eV)log
10

(E
cal

/eV)

Outlook of Cherenkov spectrum publication
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- a change in the energy scale changes the evaluation of simulated exposure

- epsilon = detection efficiency = trigger + selection efficiency = N
det

/N
MC

- use only sims/data that would be detected regardless of the energy scale -> no change in exposure

- energy scale changes within its systematic uncertainty (15%)

Fiducial volume cuts
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cuts on R
p
 and VA

Xmax

Fiducial volume cuts

effect on exposure
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